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IivhuUil Rtport Suinmnry 

Ilu- ohUill\f '»f thl?» rt'j*f uvh pr«»ur.im Is •«» cU'velop compulcr prournntM, 

using the ftntte »Unu-nt metlvHl, to prcHliot siroHxcn an«! «Iffttrmailon« In Ihf vlcin- 

liy .»i imdergr «ml f\iM\.Uli»ns.    Ilu compuliT itnturam» will havi- tlu- fapaltllltv 

to all m for arl>ltiMr> InlU.il siivMSfs in nK'k, arbitrary shape« ami «l/t* of thi- 

opmlng, am given Mquvnctof eonstnictiDn, niinhoinu^fni'ttus maiciial proprrth^, 

IntfiMiilon •»! r«u-k with Huppnrtinu stnuiun-s, pmurrsslvi« ilamano, ami HUM 

dependent cMormatlon ;in«l li»a<l dtveloprowl '»n supiMtrdnK structure.   I.imitctl 

i\|Hiinu'ni.il work t«» \»i'll\ kiy imlnts In thr ilu*ory Is planned. 

lUseareh dulag the first year Is directed towards survi-y of literaturi' 

on thf subifci, selection of mathematical models for mechanieal U-havlor of nn-k, 

an«! «lovi'Iopment of computi-r pronrams for clastic-plastic Mohr-Coulond» materials, 

f<»r hrlttle nnk follovinn Griffith's the«)ry, and for progressive dtformation and 

fracture of rock around umlcrnrouml openinKS under stress changes associated with 

excavation. 

At this reporting, si'Iectlon of mathematical models for elastic-plastic Mohr- 

Coutomb materials and for clastic-brittle materials failing accordin« to Cirifflth 

theory has been completed.   Chaptc r I of the report describes the theoretical con- 

sider itions leadin« lo the mr, Icl selected.   The stress-strain relations for incre- 

mental or rate type theory of plasticity arc «enei ally based on the normality ride 

:ind convexity and regularity of the yield surface in I 'stress-space'.   Ullflg these 
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rmu'rpls, v;iiious ln\i>lu:i!ors h;i\i' proposed confliCttal (.onstitutivt' equations. 

In iiUs rcpiTi thr i-hsth'-plastk- i>i'h;i\i<>r oi matcriali li;is been re-examined as 

i m ithi'malical iiem-rali/ation oi  »hsi-m ations on a ont'-dinu-nsional test.   The 

rolo of kinomatif constraints upon yleW i'onditions has been itwUed and adequacy 

of ciTtain postulatrs i'.xamiiu'd.   Curi'fnl theories of clastic-pliistic behavior arc 

found to be InadcquaU' as it is, in general, not possible to satisfy the 'normality 

rule as well as cc^cinuity of stress path under plane strain conditions.   Further 

research into this aspect of material behavior is needed to clear the air.   Experi- 

ments] phase of the research program is beinfi planned with this requirement in 

view.   In the mathematical model selected as the basis for development of com- 

puter programs, a modification of the yield surface is introduced to eliminate 

discontinuity in stress paths.   For behavio.   'f elastic-brittle rock, the model 

selected assumes elements of rock to be incapable of suppoi ling tensile and 

shearing forces across a crack.   A review of literature shower! errors in siinip r 

formulations by other investigators.   These have been corrected in the present 

development.   The mathematical models of elastic-plastic and elastic-brittle rock 

have been incorporated into finite element computer programs for analyses of 

stresses ami deformations of plane strain systems.   Chapters III and IV of the 

report present two computer codes along with relevant description, instructions 

lor usage and illustrative examples for: 



i.   Plane Strain Analysis of Elastic-Plastic Mohr-Coulomb Materials 

ii.   Two-Dimensional Analysis of a Non-Tension System 

Further work on these computer programs is continuing.   However, even in their 

present form, program capabilities include consideration of arbitrary initial 

stresses, arbitrary shape of openings with or without linings, and considerable 

variation in material properties.   These computer programs should be of immediate 

application to a variety of problems. 

Adequate mathematical models of rock behavior have been chosen.   The 

finite element method has been used successfully to develop computer codes for 

analysis of complex problems of stresses, deformations and fracture in rock. 

The method appears to be suitable for further development to realize the objectives 

of the current research program. 

Experimental work so far has been directed towards development of suit- 

able laboratory material (exhibiting elastic-plastic behavior).   No equipment has 

so far been purchased under the contract.   However, procurement of a plane strain 

testing machine has been initiated.   It is expected to be received in September 1971. 

(I 



PREFACE 

The terrestrial crust Is In a complex state of stress.   Underground 

excavations In this stressed medium profoundly influence the distribution of 

stress which In turn determines the stability of the opening and of the rock in 

the vicinity.   Traditional methods based upon the theory of linear elastic solids 

are inadequate.   It is necessary that the sequence of construction and realistic 

material properties be taken into accour*. in calculation of stresses and defor- 

mations in rock. 

The objective of the present research program is development of finite 

element techniques to predict stresses and deformations in the vicinity of 

underground excavations allowing for arbitrary initial itresses in the rock, 

arbitrary shape and size of the opening      • any given sequence of construction. 

The procedures will allow for nonhomogeneous material properties, interaction 

of rock with supporting structures, progressive damage, time dependent defor- 

mation and load development on supporting structures.   Limited experimental 

work to verify key points in the theory is also planned.   The entire program is 

expected to extend over three years. 

This is the first semi-annual progress report covering the period 2/1/71 

to 7/31/71.   The main activity in this period has been a review of the work done 

by other investigators in mathematical simulation of mechanical behavior of 

I elastic-plastic solids and of jointed rock.   Models of stress-strain behavior 
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have been proposed and work on (irvelopment of relevant computer programs 

started.   A sequential approach has Iwen followed whereby a basic program is 

coded and then modified to include all the ramifications of material behavior and 

actual loading sequences.   Two computer programs, viz. 

i.   Plane Strain Analysis of Elastic-Plastic Mohr-Coulomb Materials 

ii.   Two-Dimensional Analysis of u No-Tension System 

are included.   The present capabilities of each program are indicated In the 

program descriptions.   Further development on all these Is continuing and will 

be included in future reports. 

The work is supported by the U.S. Government through the Advanced 

Research Projects Agency, AR PA, and its agent the Bureau of Mines, Department 

of the Interior.   At the Ohio State University the work Is under direct supervision 

of Professors T.H. Wu, R.S. Sandhu, and J.R. Hooper.   Messrs. S.W. Huang, 

R.D. Singh, C.W. Chang and T. Chang, graduate students In the Department of 

Civil Engineering, have contributed to the research reported.   Dr. William Karwoskl 

of the Spokane Mining Research Center, Spokane, Washington is the Project Officer 

designated by the sponsor.   In early stages D/. Syd Peng of Twin Cities Mining 

Research Center, Twin Cities, Minnesota acted as the Project Officer. 

The opinions, findings and conclusions expressed in the report are those of 

the authors and not necessarily those of the U.S. Bureau of Mines, Department of 

the Interior or the Advanced Research Project Agency. 

R. S. Sandhu 
Project Supervisor 
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CHAPTER I 

THEORETICAL CONSIDERATIONS 



Chapter I.   Theoretical Considerations 

1.1.   Mechanical Behavior of Rock 

Figs. 1-1 and 1-2 show, respectively, typical stress-strain plots for a 

granite and a marble (Swanson 1970).   Upon loading the stress-strain curve is 

almost linear and reversible over a short portion.   Unloading from higher loads 

does not coincide with initial loading.   This characteristic along with rate inde- 

pendence distinguishes elastic-plastic behavior.   Reloading closely follows un- 

loading until the previous maximum is reached; whereupon the original curve 

is followed.   This leads to some simplifying assumptions. 

1.   A yield point exists below which the material is 
linear elastic. 

It,   The yield point corresponds to the maximum 
Htross level previously attained. 

iii.   Unloading and reloading paths are linear, coin- 
cident and parallel to the initial elastic loading 
curve. 

Fig. 1-3 shows this simplification.   Clearly the yield point can be described by 

the permanent or irrecoverable strain or the area bounded by the loading curve, 

the unloading curve and the horizontal axis.   Whereas in generalization to the 

three-dimensional case, the stresses and strains become second rank tensors 

and arc, therefore, unordered , the area is still a scalar product and retains 

its ordering characteristics.   To this extent, it is often preferred as a measure 

of the elastic limit. 
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Mechanical behavior of rock under polyaxial state of stress has been 

oxntnlniMl In Iho light of brittle failure theories (Brace, 1964} Bloniawski, 1907, 

19(59; Brady, 1969, 1970).   Four regions of behavior are identified in Figure 1-4. 

The first region corresponds to closure of pre-existing open cracks and is pecul- 

| lar to compressional loading.   In region n material behavior is linear elastic. 

Fracture initiation occurs near the end of this region in accordance with Griffith 

or modified Griffith Theory.   This stage also corresponds to onset of nonlinearity 

in the stress to volumetric strain curve (Brace, 1966).   Stable fracture propaga- 

tion characterizes region IL,   In region IV, unstable fracture propagation results 

in strength failure and rupture.   Differences in loading and unloading behavior 

are observed (Walsh, 1965). 

We have, thus, two general approaches to the characterization of stress- 

strain behavior of rock.   One follows the theory of elastic-plastic solids without 

consideration of micro-mechanics of the system.   The other uses Griffith theory 

or modifed Griffith theory to relate deformation and failure to initiation and pro- 

pagation uf fracture.   It has been observed (Swanson 1970) that Mohr-Coulomb 

failure lav; applies for moderate values of confining pressure and that at low 

confining pressures, failure is by rupture.   Contrary to plastic behavior, strength 

of material drops to almost zero in the direction normal to the crack If rupture 

theory is followed.   Figs. 1-6 and 1-6 depict typical relationships of failure strength 

and post failure behavior in relation to confining pressures.   It is reasonable to 

assume that the material is linear elastic upto yield or rupture , as the case may 

' 
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Figure 1-3.   Idealization of Elastic-Plastic Stress-Strain Behavior for Rocks 
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Figure 1-4.   Typical Axial and Lateral Stress-Strain Behavior of Brittle Rock 
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be, and that the post-failure behavior only is governed by the theory used to 

define failure.   Both the elastic-plastic Mohr-Coulomb failure theory and the 

Griffith theory have been used in the course of present research to develop 

computer programs for analysis of stress and deformation in rock. 

1.2      Stress-Strain Relations for Elastic- Plastic Solids 

Several approaches have been used for formulation of elastic-plastic 

behavior.   Excellent presentations of the theory are available in literature 

(Drucker, 1951; Naghdl, 1960; Green and Naghdi, 1965; Kolter, 1953; Hill, 

1950).   Specialisations to Mohr-Coulomb solids under plane strain (Drucker 

and Prager, 1952; Drucker, Gibson and Henkel, 1955; Reyes, 1965; Reyes & Deere, 

1966) have been presented.   Not intending to survey the entire range of dif- 

ferent philosophies, we present briefly a discussion of elastic-plastic behavior 

uuder kinematic constraints leading to the plane strain formulation for Mohr- 

Coulomb materials used in the computer program in Chapter III. We present 

a generalization of observations on the c Aventional uniaxial test to the case 

of three-dimensions before discussing the role of constraints. 

An isothermal system undergoing infinitetiimal deformations is of 

interest to the present report.   Extension to more comprehensive situations 

is direct. 

1.2.1.   A Generalization of One-Dimensional Test Results to Three-Dimensional 
Theory 

Analogous to the case of one-dimensional test, we assume the existence 

I 



of a set D consisting of all admissible states of stress.   D is convex,* has boun- 

dary B and includes the original or reference state.   Clearly D is six-dimensional 

(assuming symmetric stress tensors, i.e. absence of body couples) and is con- 

tained in the six-dimensional linear vector space V spanned by the six components 

o-^j of the stress tensor.   The stress in unlaxlal test is given by a real number and 

in this case D is ordered and convex.   To introduce an ordering In the six-dimen- 

sional stress space so that 'increase* and •decrease' of stress are meaningful, 

a mapping g is defined 

g:   V—*R (1-1) 

with the following properties 

i.  The image of D under g is a positive interval 
I C R. 

11.  Image of complement of D in V is the complement 
of I in R and g maps the interior Dj of D to the (1-2) 
interior of I. 

ill.  g maps the 'original' or 'reference' state to zero 
€ I. 

Then D is ordered by its image i.e. for Uy ^SD, if g(i'i> ■ g}, gO^) = 82* "2 iB 

greater than, equivalent*1^, or less than vi depending upon g2 being greater than. 

! 

«Convexity of D is the property that vi, t^EDafrafi + (1 -a) v^EDYa€ [0, ll. 
In literature, there are frequent references to a convex yield surface.  This is in- 
accurate.   It is easy to see that convexity of D does not imply convexity of its boun- 
dary B.   Indeed, B is in general not convex. 

♦♦The term equivalent is used because g, in general, is not one to one. 
Thus, I/J, 1^2 may be distinct while their images coincide. 



equal to or less than g^.   The mapping preserves convexity of D.   The Interval 

1 = [0f f J where f Is the Image of boundary B of D. 

In one-dimensional tests, the set of admissible stress states may include 

negative points.   The limiting stress states in ters'or. and compression provide 

a positive supremum and a negative infimum to this set.   The boundary B of this 

set is clearly discontinuous.   In a multi-dimensional stress space, B may be 

continuous.   To ensure correspondence between the one-dimensional and multi- 

dimensional cases, g is a two to one mapping in the case of one-dimensional 

loading.   Thus the image of B is in all cases the supremum of non-negative 

interval I. 

The boundary B of D and hence its image f under g are defined by prior 

deformation and load history.   Considering components e., of the strain tensor, 

on the analogy of the results of one-dimensional test, a plastic strain tensor 

with components c "^ is defined such that 

i.   For a given c"kl» there is one to one correspondence 
between elements of D and a set of points in the six- 
dimensional space spanned by e 'kl = ekl - e"kl • e 'kl 
are identified as components of the elastic strain tensor, 

(1-3) 
11.   If a generalization of Prandtl's simplifying assumption 

is admitted, the one to one correspondence between 
"'kl € D an^ e 'kl ^s independent of prior deformation 
history, and for stress states defined by interior Dj of 
D, c "kl vanish. 

A positive maasure of history of deformation can be defined in various 

ways.   If plastic strain is used as    representative of deformation history, a 



mapping X on H the six-dimensional linear vector space spanned by components 

kl of the plastic strain tensor is introduced 

X :      H- (1-4) 

where P is the positive class of real numbers.   Other measures using bilinear 

or nonlinear maps involving both the stress and plastic strain components are 

in use.   An example is* 

t 
*('kl. cV   - /'<rkl(T)de" 

T = -   oo*7 
klC) (1-5) 

In all cases the objective is to define a positive number k such that it equals the 

image f under g of boundary B of D.   For elastic-perfectly plastic solids, k is 

constant but, in general, for stable material, k is a monotone increasing function 

of history of deformation and stress.   In certain cases, the mapping g may also 

vary with plastic deformation.   This happens when kinematic constraints are pre- 

sent.   Theory of kinematic hardening is an instance in which the reference point 

in D, having image zero in I, depends upon utress and deformation history. 

Considering, for the present discussion** Xte^u) = k, 

g(<rkl) <   f =  k =  ^(e-ki) (1-6) 

♦Here and in subsequent work, standard indicial notation is used.   Sum- 
mation on repeated indices is implied unless otherwise indicated. 

t 
**A more general assumption uses X=X{ *, e"..) where K =       f V^T) d e"ij(T). 

In that case X = —*     +   —%&.   i"... Tm~i 

2* 
^"ij 

ir 



In the interior of D, r "kj ■ 0, g^^jX f = k and 

'kl  =  Ekl(f,mn) 

■ Ekl ^mn> ^^ 

For differential changes in stress and strain components, using a superposed dot 

to indicate differential quantities, 

Tkl  "  Eklmn c,mn 

■ Eklmn ^mn <I'8) 

assuming that Ekl -s sufficiently smooth and its derivative Ekimn»a tensor of 

fourth rank,exists. 

On the boundary B of D, 

g(<rkl)   =  f =  k =   V(c"kl) (1-9) 

For g, X sufficiently smooth in their arguments 
• • • 

*   = X (e"kl)   =  hkle"kl (I-10) 

g =  g(«rkl)   ■  Qkl'kl <1-11) 

In the case of elastio-perfectly plastic solids, hkj = 0 and arbitrary plastic straining 

can occur for X = 0 i.e. X- k, a positive constant.   Also g = f = k requires g = 0 

leading to the relationship 

qki;kl  = 0 (1-12) 

Equation 1-12 requires the stress changes to be in a plane tangent to the hyperplane 

defined by g (or^j) = k.   However, for hw / 0,for nonvanishlnge "^j, X > 0 and g = 
• • • • • 

f >0.   This is termed loading and g = f = k = X.   For vanishing e"^, X - 0 and 

10 



I 
once again equation 1-12 applies.   This is the case of neutral loading.   In all 

cases g <0 implies decreusing load.   This Is the case of unloading and equation 

1-8 applies with e'V. ■ 0. 

1.2.2    Evaluation of Incremental Plastic Strain in Loading 

Equations I-10 and Ml suggest a rolationship of the type 

«"kl       sklmn »mn (I-13) 

where \\mn may depend upon i "mn, Jmn .   Resolving <rmn Into components along 

the boundary B and normal to it, ..«o plastic strain is due only to the normal com- 

ponent.   Prager (194i<f showed that 

■ •" "Si 
independent of <rinn .   Hence direction of c "M is Independent of the direction of 

stress change given by 9mn.  Other relations for plastic strain increments have 

been proposed.   Using a thermo-dynamic postulate, Drucker (1961) obtained the 

normality rule 

e"    = \   ~*—      at g=f (1-15) 
ij ^i, 

where X is a positive scalar which for rate Independence must be homogeneous 

of order one in <T^. 

11 
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Drucker used the normality rule to evaluate A .   Defining 

• 
r"    ^ e 

'l   f"     r*II    I2 (1-16) 

\  = 
F"e at g= f (1-17) 

Now defining                <re  = h Sy SJJ I8 

•                                1 

(1-18) 

where                            S-.   - o-^ -   S    /kk 
3 

(1-19) 

cr 
and writing    e     , the slope of the (ret e "e curve as H, equation I- -17 gives, with 

e 
the normality rule 

11. 
^"•ii 

• 

ij 
^g ^g    -1^ 

L2    ^mn        ^mnj 

f g 
**i)        hi      skl 

.     ,i       (I"20) 

e 
[     ^mn        «^mnj 

This formulation was used in the so-called tangent modulus methods e.g. Swedlow 

and Yang (1965). 

Hill used the normality rule assuming X to be a fourth rank tensor linear 

In ir^j and introduced a plastic potential.   Using normality as well as the condition 
I • « *       i 

g ^ f = k = V on the boundary B of D, Prager (1949) obtained 

^L    "n <r. 
\  =    z—U  (1-21) 

^E"mn        ^«"mn 

12 



This formulation breaks down for clastic-perfectly solids where X is independent 

mn. Felippa (1966) obtained X in terms of en, increment in the total strain 

tensor.   In this procedure 

Off 

'ij       I Eljkl ^km ^ln " Eijkl Milmn   f mn (1-22) 

where 
Jklmn 

[M-    Jit +   ll_   E 3£- T1   JLß-    E    .. ^^ 
l>c"ij     &n      ^ij      ^   ^'pqj       ^'rs      r8k1'»^ 'mn 

(1-23) 

This approach is valid for all cases including perfect plasticity and was used by 

Zienkiewicz, Valliappan and King (1969) in developing finite element procedures. 

Using rate of work equations, it is possible to evaluate X in terms of stress 

rates for materials of von Mises or Mohr-Coulomb type.   Yamada (1968) used this 

approach for finite element analysis of von Mises solids.   Using Drucker and Prager's 

generalization of Mohr-Coulomb law, Reyes (1965) developed the stress-strain equa- 

tion for generalized Mohr-Coulomb elastic-perfectly plastic solids under plane 

strain conditions.   The finite element procedures presented by Reyes and Deere 

(1966), Baker, Sandhu and Shieh (1969) and those included in Chapter III of this 

report were based on these equations.   For plane strain 

11 

r22l 

12 

=     2G 

Dll D12 D13-| ell 

D21 D22 D23 «22 

D31 D32 
D33J ^12 

(1-24) 

where 
Dll  =  1 - h2 - 2 hi <rii - ha vu* 

D22  =   1 - h2 - 2 hj 0-22 - l^ ir222 

13 



and 

D33 =  *-S'ü 
D12  =   D21  =  ' h2 ' hl'22 " hl'11   "  ^^'ll (1-25) 

D13 *   D31  =   -V^-^'^'ll 

D      =D      =-h(r     -ho-     v 
23 32 1   12       3   12   22 

hl  =      2 G       6 J2i 

J2    (1 + 9 a2 -£ ) 
Z G 

'kk K ""kk 
a r   3a T   - 

h0  P 6J2i    ^  G        3J2^       .       3vfK 
'2 

■ E(l + 9a2iL) 
(1 + 9a2  Ü) 2 "^•-"-    G 

hg  = 
232h. (l + 9a2 ii) 

J2  =  i   Slj   S1J 

E, K, @ ■ elastic Young's modulus, bulk modulus and shear modulus, respectively. 

„    _      tan 0 

//9+12 tan2* 

0    ■  the angle of internal friction 

f     =  a   -^   +  J2i 
3 Z 

1.2.3.   Kinematic Constraints 

Plane strain conditions impose a kinematic constraint upon the deforming 

solid.   In relation to elastic-plastic behavior, a consequence is that the yield sur- 

14 
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surface from the elastic side iid plastic side do not, in general, coincide (Baker 

et.al. 1969).   Consider the deformation of a body undergoing deformation. F, the 

set of all admissible deformation, is contained in the six-dimensional vector 

space S spanned by components rui of the strain tensor.   A kinematic constraint 

can be written as 

C (Ckl)   =  0 (1-26) 

and the admissible deformation is restricted to the intersection of F with the hyper- 

plane in S defined by equation 1-26.   If several constraints are present, the admiss- 

ible deformation is restricted to 
n 
n       K (<ki) = o] (1-27) 

As the multiple intersection reduces the dimension of the vector space by n, it is 

clear that n cannot exceed six. 

Consider a single constraint.   In differential form the equation is 

CW cid = 0 (1-28) 

where coefficients C^ depend upon e^. 

As elastic-plastic behavior is studied with reference to loading paths in 

the stress space V, it is necessary that kinematic constraints be rewritten as 

constraints on stress. Here, for no plastic strain, we simply use the Inverse of 

equation 1-8 to write equation 1-27 as 

ckl cklmn 'mn = 0 (J"29) 

Gmn 'mn = 0 &*) 

15 



where Cklmn  =   [Eklmnl'1 <I-31) 

*** Gmn " ckl cklmn <1"32) 

For the case of not all of r "^ vanishing, two alternative procedures are available. 

Using definition of elastic strain tensor, 

ekl   =  * 'kl  + * \\ V-33) 

If T, ij-- is the inverse of \imn in equation 1-13 

• • • 
Ekl  = cklmna'mn+Tklmn'mn (I'34) 

= [^Ipq + Tklmn EmnpqJ £ 'pq (I"35) 

- »w« l'« <I-36) 

where IM^. IS a four'Ui rank identity tensor.   Thus the constraint is expressed by 

C.. c,,   =  C.. K,.      c' (1-37) kl kl          kl  Tclpq     pq 
• ^ 

" ckl KklpqCpqmn'mn (1-38) 

^klmn'mn^ ^ 

Jklmn = Ckl [^pq + ^Irs Erspq J Cpqmn (I'40) where Lklmn = Cl 

An alternative procedure is to use the normality rule and to satisfy the constraint 

both upon loading and unloading i. e. Ckl e 'kl = 0 = ^kl e "kl •   Then the fir8t e(Iua~ 

tion is identical with equation 1-29 but the second equation gives 

ckl x •^-fi-    " 0 (1-41) 
«'kl 

Equation 1-41 may or may not coincide with equation 1-39.   Equations 1-29 and 1-39 

have linear relationship between incremental stresses and describe hyperplanes 



tangent to any loading path in the stress space V.   As the two equations are in 

general different, there is a slope (.iscontinuity in the stress path as plastic 

straining begins upon reaching the boundary B of D.   We note In particular that 

proportional stress paths in V may not be possible in the presence of kinematic 

constraints.   In the case of linear elasUclty( let equation 1-30 define a plane 

passing through the origin in V.   A proportional loading path lying In this plane 

is possible upto the point of intersection with boundary B.   Beyond that, upon 

loading, stress path has to be in the surface determined by Equation 1-39 and 

this will in general be non-planar.   If loading Is continued to a certain point 

along this surface, unloading therefore wilt be along a path lying in a plane 

parallel to the original loading plane but different from it and not passing through 

the origin.   Thus unloading to Initial state is impossible.  This corresponds to 

setting up of residual stresses corresponding to kinematic constraints. 

Specifically considering plane strain conditions and elastlc-perfectly 

plastic Mohr-Coulomb material, the mapping g from the set of all admissible 

stress states to the positive Interval [o, f ]ls 

g (o-y)  = a — ♦ Jg2 (1-42) 

J2    = i 'ij 'Ij "    — (I"43) 

Linear Isotropie elasticity implies, for r "JJ ■ 0 

Plane strain condition implies 

c13  " c23 =  e33  "  0 C1"46) 
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From equations 1-44 and 1-45 

'13  " '23  "  ü <1-46) 

'33  =  'fll + 'ii (I-47) 

| u 
For t ji, not all vanishing, using normality rule 

. "    x U        IiLlX-LiiIhL.1 eij = xl3 ^ —n^   J 
«Ttk 

■  0 a + '33 "     3 
3 

2 J2i 

2 
S 

2 a Joi 
'33 -  - —f- 

'11 + <r22 
+   ————— 

or (Tgg- -a J25  +  !(••!!+••22) (1-48) 

Equations 1-47 and 1-48 define different surfaces in a three-dimensional space 

spanned by 0-^, o^t 'ss* L^ their intersections with B be respectively, P and 

Q.   The stress path is constrained to lie in the plane defined by equation 1-47 for 

stress states in the Interior of D and for neutral loading.   For plastic deformation 

to occur the stress path must lie in the surface defined by equation 1-48.   For a 

continuous stress path to be possible, P and Q must coincide.   In general this 

is not the case.   Figure 1-7 illustrates the difference between the surfaces P 

and Q for Mohr-Coulomb plane strain case. 

Considering that the stresses 0-33 do not contribute to energy/work of the 

system, it appears reasonable to assume that progress from P to Q is possible 

with gradually increasing the value of 0-33.   This would amount to following the 
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boundary B.   Growth of 0-33 in progress from P to Q and the behavior upon unloading 

are not clearly understood.   Later investigations may throw light on this aspect of 

material behavior.   For the purpose of the computer program in Chapter in,it is 

assumed that elastic loading in plane strain can be continued upto a point from which 

the transition to plastic plane strain loading is possible merely by adding a residual 

value of 0-33.   Referring to Drucker and Prager (1952), this is given by 

k  -  f -  g ^U( <r22,T12) 
2        af 

(1-49) 

I 
i ' f ' ('U * '22> ^ v/l - »°2   [ '" 2 * T12 J 

I 
1 
I 
I 

1.3.    Stress-Strain Behavior of Jointed/Cracked Rock 

Mathematical simulation of behavior of Jointed rock must allow for closing 

of pre-existing open joints under compressive loads tollowed by linear elastic 

behavior upto initiation of fracture.   After fracture occurs, the material cannot 

take any tension loca?ly In the direction normal to the plane of crack.   Non-monotonic 

loads may Involve closing-cracking-closing cycles 

The finite element method has been applied to jointed rock (Anderson and 

Dodd, 1966; Goodman et al, 1968; Duncan and Goodman, 1968; Maltna, 1971). 

Anrlerson and Dodd used pin ended one-dimensional elements across a fault to 

allow compressive stresses to be transferred in the direction normal to the fault. 

The fault plane was assumed to have no resistance against shear or tensile loads. 

This capability is now routinely incorporated in most finite element programs.  A 

20 



two-dimensional 'soft' material element has long been used to represent weak 

joint planes in rock.   Duncan and Goodman ^1968) object to this on the basle of 

large number of elements needed to ensure a reasonable 'aspect ratio' In Hhupe 

of elements.   This becomes a problem for elements representing very thin JolnlH. 

A one-dimensional element with shear and normal stiffness characteristics was 

proposed by Goodman et al (1968) to eliminate this objection.   Recently (1971), 

the same investigators have introduced nonlinear properties in this type of ele- 

ment.   This approach is quite effective for the case of pre-existing joints in rock. 

For well defined orthogonal joint systems, an orthotropic continuum approach 

was suggested by Duncan and Goodman (1968).   Christian is credited (Einstein, 

Bruhn and Hirschfeld, 1970) with development of an element capable of simulating 

constant shear and residual shear characteristics. 

In all these investigations, a distinct set of elements is used to represent 

the joint.   This is alright for pre-existing joints but is impracticable for dis- 

continuities arising as a result of fracture under applied load.   To use the same 

procedure both for pre-existing joints as well as post failure cracks, it is nec- 

essary to allow cracks and joints within elements.   Then, the mesh layout is 

more flexible and arbitrary failure laws can be used.   Malina (1971) used this 

approach to study failure along joint planes and then went on to compute the 

amount of slip and accompanying stress redistribution on the basis of deforma- 

tion or slip theory of plasticity. 
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Apparently, a blmodular analysis procedure (Sandhu and Wilson, 1970) 

can be used to represent pre-existing joints as well as fractures.   Bimodularity 

would be dependent upon the joint opening.   However, noting that fractured or 

open jointed rock has no resistance to tension in the direction normal to that of 

fracture, a simple approach following the procedure introduced by Zlenkiewicz 

et al (1968) is more convenient.   The 'no tension' method of Zlenkiewicz consists 

of first obtaining a solution assuming the system to be linear elastic.   Then the 

elements in tension are rel.aved of the tensile stresses by application of self- 

equilibrating forces in elements and at nodal points.   This gives an iterative 

scheme for redistribution of loads to surrounding rock and a lower bound to 

the exact solution.   This approach is essentially an orthotropic continuum 

approach with the orthotropy being applied to Individual elements depending 

upon the orientation of the fracture plane.   The fracture plane defines also a 

plane of material orthotropy.   The relationship between principal stresses and 

strains can be written as 

""l 

*2 

Cll 

C12 

Cl2 

C22 

El 

C2| 

(1-50) 

or symbolically 
^P    =    Cp   Ep (1-51) 

The laws of transformation of stress and strain give. 

f2l 

cos2 0     sin2 6       sin e cos 01 

sin2 6     cos2 6   - sin 6 cos 6 J Yxyl 
(1-52) 
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and 

xy 

"     2 cos   n »In2 n             i 

■In2 o cos2 ft 

sin ft cos ft - sin o cos ft 

(I-B3) 

whcru vx, (T    ijjy are components of stress and cx. Cy, >_ are oompooents of 

strain In x, y coordinate system and 0 Is the angle between the principal direction 

1 and x-axls.   Symbolically, the above equations are 

T 

.p-J. 

(1-54) 

(I-6B) 

Substitution In I-Sl gives 

T - jT C    J e (I-B6) 

Ce (I-B7) 

where C  ^  JT Cp J (1-68) 

Equation I-5ft gives the transformHtton for streas-strain relation for principal 

direction to any arbitrary choice of roordlnatcs.  The matrix C Is singular only 

for ft - o or 90*.   It Is thus possible to use the relationship In principal stresses 

and principal strains as the starting point. 

In finite element analysis procedures, the stiffness mxtrix for the system 

is the sum   of element stiffnesses. 

M 

K   =   Z     km 

m = l 
(I-Oll) 
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where  K Is the system stiffness, km is the stiffness of the nth element, and E 

is viewed as a direct stiffness summation operator.   Further, element stiffness 

is related to constitutive relationship through the equation 

km  -     /[bT  c b]   dV 
vm 

(1-60) 

where b is the matrix relating strains to nodal point displacements, and V is the 

volume of the element.   Using Equation 1-58, the integrand in 1-60 can be written 

bTC b =   bT   JT  Cp J b (1-61) 

= bT  JT   o-p (1-62) 

-  BT (rp (1-63) 

X        T      X 
where B   = b    J   relates principal stresses to nodal point forces. 

Occurrence of fracture in an element reduces its ability to take tensile 

stresses normal to the fracture plane.   Also there can be no shear transmitted 

across a crack which therefore is a principal direction.   Thus, it is reasonable 

to reanalyze the system assigning an orthotropic constitutive relationship and a 

presecribed principal direction to the element containing a fracture.   The proce- 

dure is to be repeated until no further fracturing occurs under a given load.   To 

allow for nonlinearlty Introduced by progressive cracking. Incremental procedures 

are required. 

In Zienklewlcz et al (1968), a change in element stiffness was considered 

equivalent to a pseudo-load.  Thus an iterative solution scheme was set up in 
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which each iteration only Involved a back-substitution operation.   The pseudo- 

loads were computed as equivalent to tensile principal stresses.   This is satis- 

factory when both principal stresses are tensile.   However, when only one of 

the principal stresses is tensile, use of pseudo-load corresponding to one prin- 

cipal stress introduces a non-symmetric constitutive law.   Actually if the phy- 

sical concept of 'unloading without any displacements• be followed, a change in 

the second principal stress corresponding to Poission's effect due to the first 

stress must be included.   This modification is included in the computer program 

in Chapter IV. 
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Chapter II.   The Finite Element Method 

2.1.   Basic Concepts 

A boundary value problem can be stated in the form 

A u  =  f on   F (H-l) 

where u is the unknown function to be determined, A is an operator, and f is the 

'forcing* function.   F is the domain of interest and may be an open, connected, 

bounded spatial region embedded in R   or in a cartesian product, R   x fo, ») 

where fo, ») is the non-negative time interval.   In addition to the field equation 

n-1, there will be some conditions to be satsifed on boundary S of F.   For A 

linear positive, it can be shown that equation n-1 has a unique solution.   Nec- 

essarily, any approximate solution will in general not coincide with the unique 

solution of n-1 and consequentl; no approximate solution is expected to satisfy 

the field equation as well as the boundary conditions completely. 

Solutions to engineering problems as well as the forcing functions are 

in general bounded and therefore belong to Lg »the space of square Integrable 

function.   However u may be contained in a subset D of Lo such that A is defined 

on D.   We assume that D is dense in L^.   If the set of functions | ^ k= 1,2,.. «X 

is an orthonormal basis in D, then any function u can be expressed as an Infinite 

sum: N 
u =  Z     ak   tfk ai-2) 

k = l 

A scheme to generate approximate solutions is to use a finite set of terms in the 
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infinite sum above.   Thus, we use 
N 

S s    ks i ak ^ (n-3) 

as an approximation.   The approximation process then consists of appropriate 

choice of N, (/^ and the coefficients a^.   Several alternative procedures are avail- 

able.   The finite element method is a special process of selection of a finite sub- 

set of the basis { ^uf •   The coefficients a^ are evaluated by an extension of Ritz 

method or other standard procedures. 

The finite element method is well documented In literature (Zienkiewicz, 

1967; Bell andHoland, WPAFBConference, 1965,1968; Felippa, 1966;Clough, 1960, 

1965).   Its theoretical basis (Oden, 1969; de Arantes e Ollveira, 1968, Zlamal, 

1968; Melkes, 1970) and relationship to variational principles (Melosh, 1963, Plan 

and Tong, 1969) have been examined.   Essentially, a finite element Idealization 

partitions the spatial region F into a finite number of nontrivial discrete elements 

or subregions.   The geometry of the elements Is defined by a set of points in space 

called the nodal points of the system. 

Over an element e let an approximation to u be 
Ne 

.e        «.     „ e ä e 

or in matrix form 

-rekT 

uB =    S     ak
e \v (n-3) 

k=l 

ue =  [r f { a6} (n-4) 

where { 0   |      is a row vector consisting of \e as its elements and |ae|is a 
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column vector of coefficients a^6.   Evaluating the function at nodal points 

«. T 

(n-6) 

where | uj61  is the vector of nodal point values of the function andj^i   |       is the 

matrix of base functions evaluated at each nodal point.   Rows and columns off^i 1 

are linearly independent.   If square, the matrix is invertible.   If the number of 

nodal points is not equal to the number of independent base functions, a least 

square procedure can be used for inversion.   Hence, we can write 

{•e}= [mT1 M 

Substituting n-6 in 11-5 
T 

ue = { *e}    [A] -1  | ut6 | (n-7) 

*\**f hf] (n-8) 
where | ^   i can now be regarded as a set of interpolating functions relating nodal 

point values of a function to the value of an arbitrary point within the element. 

2.2.   A Potential Energy Formulation 

We HKRump th« rock continuum or •discontinuum1 to be stepwise linear for 

Mufflrirnilv   'null rit«pn In loading.   For such a case the governing equations are 

'ki.k ' ".k Nk * p Fi 

'ij       Eljkl   «kl   ' 'ij 

ekl       u(k,I) 

= 0 (II-9) 

(11-10) 

(n-ii) 
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where o-j., cj. , E^ t F^ , Uj    are components,respectively,of the symmetric 

stress tensor, the symmetric strain tensor, the isothermal elasticity tensor, the 

body forces vector per unit mass, and the displacement vector,   o is the mass 

density and f».   is the kronecker delta,  ö-js are components of initial stress cor- 

responding to zero displacement and n is the pore pressure.   Potential ei ergy 

formulation uses the functional 

n -  /[. 1J Eljkl «kl   " ^ ""ij»!" 2 Mj 'ij + % 'ij 

2uipFi   -  2 Ui7r(j+2 ey iy j dF 

f h f * 
J    uj (O-JJ nj - 2 tj ) ds -       I   (ui - 2 uj)  o-y nj   ds     (11-12) + 

BZ 8 

where we have included (he boundary condition 

o-.   n.  = t. on s1 (11-13) 

u.   = Uj   on   s« (11-14) 

s1, 82 are complementary subsets of S the boundary of F and nj are components 

of unit vector normal to surface. 

Symmetry of the field equations leads to the functional 

-2uj7r 1 + 2Ejjö:
ij|dF 

r A f    * 
I   ujtids  -    2      I  (uj - uj ) crjj nj   ds (11-15) 

•f B2r 
-2 

Further assuming that we restrict our choice of q« , 14  such that 11-11 and 11-14 
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arc identically sutlsflcd, the functional In 11-15 reduces to 

"        J  Kj Eijkl  uk,l  - 2uip Fi - 2^ 7rji+ 2 U^J^J I dF 

- 2      / Ujti  ds (n-16) 

./ 

m 
/_ -.m Replacing      /      by      S       Jm      where F    represents the subregion or element 

m, and using suitable interpolation scheme to express the integrand in terms of nodal 

point vectors of displacement, vanishing of variation of the functional yields the matrix 

equation 

HI" 
m 

where 

[K]|ut   . jR| 
m _ 

[K].    Z „- 
m = l J 

(11-17) 

(n-18) 

|Rt = ■.f.[M + Pm   -   Qm hM] (n-i9) 

Components of element stiffness matrix and load vectors are: 

klJ - / 
Fm 

. m 
nm.n  Emnpq 0JP.q (11-20) 

L.». 
/m 

j.m  _ 
P    ^ij    f) (n-2i) 

nm' fm *ij    ^.J (n-22) 

m 
0,    = 

pm 

m       _ 
im,n   'mn (n-23) 

m 
Ti     = ^m 

(11-24) 



I 

_        rp 

and I'ft  are components of a matrix formed by the row vectors | <t>   \    corresponding 

to each degree of displacement freedom.   The vectors |Lm|, jPmj, {Qm |,    |Tm} 

represent the contribution to the load vector made respectively by the body forces, 

the pore pressure gradients, the initial stresses and the boundary loads in the ele- 

ment m. 

2.3  Incremental Analysis 

In case of Incremental construction and incremental application of loads, 

the loads, stresses and displacements for any incremental step can be written as 

|Rn}  • {"nl  and |un| •   Then for the next stage,  |(rn|   and |un| can be regarded 

as the initial stresses and the initial displacements for the structural system.  Thus 

the matrix equations are 

[^l]    {Vl  -  un} =    [Kn+l]{Aun}   = {ARn} <n-25) 

where m 
ARn   "    s 

m = l 
[AL™!  +    !APmj   -   JAQmj  +   LT1"! 1  (n-26) 

and {AL"1! t | APml ,| AQm \ ,   I A Tm i  are increments in the respective quantities. 

For elastic-plastic analysis, the stiffness depends upon stress and has to be 

re-evaluated at small increments of load.   To ensure manageable computation, the 

increments are kept at the largest practicable without loss of accuracy. 
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Chapter 111.   Computei :■■.   gr m        Plane Strain Analysis of 
Elastic-Plastic Mohr-Coulomb Materials 

3,1,   Organization 

Computer pro^nrn ^cmribci her.' is based on the theory presented earlier 

In ihis report.   The program is written in Fortran IV language. 

The program is Intended 10 calculate strobes and strains for a plane strain 

problem in rock mechanics.   Mohr-Coulomb yield criterion has been used.   It 

makes allowance for the boundary conditions, renldual stresses, stresses due to 

temperature change, and varying pressure boundaries.   The structure may consist 

of different materials.   It uses Wilson's (1965) quadrilateral elements and generates 

stiffness in line with the integration procedures discussed by Fellppa (1966). 

The principal program called MAIN controls all the data Input and control 

information.   It doeb the basic system initialization and prints the control data and 

material and geometrical properties of the structure.   Stiffness formulation, equa- 

tion solving and stress calculations are done by the subroutines called by MAIN. 

3.12.   Stiffness and Load Matrices 

Stiffness matrix for each analysis It competed in blocks by the subroutine 

STIFF.   For the element stiffness it calls QUAD for triangular and quadrilateral 

elements which have been allowed by this program.   The element stiffness is added 

to the total stiffness using the direct stiffness technique.   Concentrated loads are 

included in the load matrix.   Equations are modified for the displacement boundary 

conditions by calling subroutine MODIFY.   For the stress-strain matrix QUAD 
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calls STHSTH.   With Ihe cnnstuuuvc law ouln^ iviUlabU«, stiffness of the system 

:iml lend matrix an* contpuieil in un- BT1FI HUbruutine. 

S, 13.   Calculations of Displacemeias 

After the stittnes? trul load matrices for a stage have been computed, the 

rcsalfnc equations are solved by c illir.g subroutine BANSOL.   This uses Gaussian 

•limlntttOB technique tor banded equations by Wilson (1963).   In this the trlangularl- 

Batton of stiffness matrix Is done.   Back substitution through the trlangullzed matrix 

joves the solution. 

3.14.   Calculation«« "• Stresses 

• i. thi- brat cyeli ■ purely eltattfl solution is obtained for the problem by solving 

[K^j{r| {K| (m-l) 

whrr- (K* J IS ft« elutte stiffness 
j r }   is tho diS}-;ao.tricnt vector 
jR | Is the load vector. 

This on be done easily by assumine all the tUrfttfll to be elastic to begin with. 

As the problem is a nonlinear one, therefore this solution will not be correct.   In 

our analysis the system is assume:) to t>e stepvnse linear between the yielding of 

one element to the other.   This is UMlMd not »o cause any significant error.   In 

FiR. .1-1 point A represents the Initial stresses and C the final stresses in an ele- 

ment.   The curve f    k represents t>-.e yield surface.   For t'.iose elements which 

become plastic under this loading   AC  meets the nurface f    k at pt. B.   It Is seen 

• •.i.sii.v thai for the element it is not possible UJ I.P IOMM to po'.nt C but It can be 

loadad to point B only, assuming proportional loading. 
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Lot S j   ii      .   H     is calloii Ihu HtrcHH ralio.   To CMlculatt' S    wt- 

know that _* 
AC   -   ((Tjj),    -   (-rjj ij 

OB   -   O^       Ä"B 

OA   ♦ 8,  '   AC 

As the point B lies on the yield surface f • k 

From equation (111-2) the value of B_ can be calculated,   This stress ratio   repre- 

sents the fraction by which the increment in ptress is to be scaled to bring the final 

load on the yield surface. 

Value of Sr is calculated for all the elements.   The element in which the 

final stress state is farthest from the yield surface will have the minimum stress 

ratio.   If we scale do*ii the displacements and stresses in this ratio, we shall have 

the stresses and strainr precisely at the point when the system has its first element 

Just going into the plastic region from purely elastic system. 

In the next step the element having stress ratio equal to the minimum value 

is assumed to be plastic.   To economize on computer time all such elements which 

have their value of stress ratio in the vicinity of minimum were also allowed to go 

plastic.   As the stress-strain matrix if. knowr. th«- stiffness is calculated again and 

equation [Ki J I'1} "   I Rl} (m":,) 
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is solved.   This procedure is repeated until the whole load has been applied to 

the system and cumulative stresses and displacements calculated.   The stresses 

in (i-l)th step become the initial stresses for ith step. 
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3.2.   Input Data Preparation 

1. Control Card (A6).   This card will carry the characters START In columns 

1-5.   This will start the processing of the data deck which consists of the 

following set of cards. 

2. Job Title (72H).   This card will give the descriptive identification for 

the job. 

3. Control Information (415, 2F10.2, If^ 

Information Columns 

Total number of nodal points 1-5 

Total number of elements                                   6-10 

Number of different materials                           11 - 15 

Number of pressure boundary cards                 16 - 20 

Body Force in x-directlon                                 21-30 

Body Force in y-direction                                  31-40 

Number of Approximations                                41-45 

4. Material Property Cards.   One set of 8 cards is provided for each material. 

In each set: 

a. first card (lI5tF10.0> will give the following information 

Material identification number 1-5 

Maas density of the material 6-15 

b. Tho second card will carry the foUowlng information (4F10.0) 



Information Columns 

Elastic Modulus 1-10 

Poisson's Ratio 11-20 

Cohesion 21-30 

Friction Angle in Degrees 31-40 

5. Nodal Point Cards (15, F5.0, 5F 10.0». 

One card for each nodal point with the following information: 

Nodal Point number 1-5 

Type of Nodal point 6-10 

X-ordinate 11 - 20 

Y-ordinate 21-30 

XR 31 - 40 

XZ 41 - 50 

If the number in columns 6 - 10 is 

Zero XR is the specified X-load and XZ is the specified Y-load 

1 XR is the specified X-dispiaccment and XZ is the specified Y-load 

2 XR is the specified X-load and XZ is the specified Y-dlsplacement 

3 XR is the specified X-dispIacement and XZ is the specified Y-displacerm 

All loads are considered to he total forces acting on an element of unit thickness. 

Nodal point cards must be in numerical sequence.   If cards are omitted, the 

omitted nodal points are generated at equal intervals along a straight line between 

the defined nod:,! points. The type of the nodal point, as well as XR, XZ, are set 

equal to zero. 
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6, Element Cards (615).   Out card tor each ele.nent will provide the following data. 

Information Columns 

Number of element 1-5 

Nodal point I 6-10 

Nodal point J 11-15 

Nodal point K 16-20 

Nodal point L 21-25 

Material type 26 - 30 

Nodal points I, J,K,L arc comers of each individual element in a counter- 

clockwise order for a rirrht handed system of coordinates.   For triangular 

elements set nodal point L same as nodal point K.   The element cards must 

be in the numerical sequence.   Any curds that are omitted will be automatically 

generated in the program by incrementing each of the I,J,K, and L nodal points 

by one.   The material type wir be taken the same as for the last element defined. 

7. Pressure Boundary Cards (2T5, 2F10.0).   One card for each boundary element 

which is subjected to a normal pressure will carry the following information: 

Information Columns 

Nodal Point I 1-5 

Nodal Point J 6-10 

Normal Pressure at I 11-20 

Normal Pressure at J 21-30 



As shown in the sketch, the boundary element must be on the left as one 

progressfis from I to J.   Surface tensile forces is input as a negative pressure. 

Output Information: 

The following information is developed and printed by the program: 

1. Reprint of input data 

2. Nodal point displacements 

3. Stresses at the cenior of each clement 
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3.3 Program lintlng 

C PLANE STRAIN ANALYSE 01 ELASTK-PLASTIC MOHR-COULOMB MATERIALS 
C 

IMPLICIT   REAL*8(A-HtfW) 
r.OMMÜN ACELRfACELZtVOLtTFHP, S If. K ^00 , 7) «HED( 18) tEU( 121 tRO( 12 ) t 

*R(500)»Z(500)tUR(500)fUZ(500)*Cn0E(^0Ü)tT(500)tPRn00t2lt 
*NUMM ATt NUHPC t N «MT YPE « KKK»NUMNP t NUMEl •NNN» 
♦ I8C ( 100), JBCl 100) «MTAGUOO» 
COMMON/ARG/ RR( 5) ,ZZ I 5 ) * S( 10» 10 ). P(8 «, ST ( 3, 10) »COt 3 ) t SIGf 7 ) tEE(4) 

*»BOI1000)«SRlfSR2f 
♦ RAT10(A00),LM(4SIX(400,5»,XC,YC 
COMMON /BANARG/ MBANDtNbMBLK,B(138).AlL08t34) 
DIMENSION W0RD(2) 

C 
DATA WORD/ 6HSTART «6HST0P  / 
CALL ERRSET(207«256»-1«1) 
CALL ERRSET(208»256f-l,l) 

C 
C 

I 

5 READ (5*10061 W0R01 
IF CMORDl.EQ.MOROm) GO TO 50 
IF (W0RD1.EQ.W0R0(2))  STOP 
GO TO 5 

50 READ (5,1000) HED*NUMNPVNUMEL,NUMMAT*NUMPC,ACELR*ACELZ,NP 
WRITE(6,2000) HED,NUMNP*NUMEL«NUMMAT«NUMPC,ACELRfACELZfNP 
DO 55 M'ltNUMMAT 
READ (5»100l) MTVPE«RO(MTYPE) 
WRITE(6,2001) MTVPE,RO(MTYPE) 
READ (5,1002) (E(J,MTYPE)♦J»1,4) 
WRITE(6,2002) (F(J*MTVPE),J«l,4) 

55 CONTINUE 

WRITE (6,2003) 
L=0 

60 READ  (5,1003) N,CODE(N),R(N),Z(N)«URIN),UZ(N)»TIN) 
NL»L*l 
ZX»N-L 
DRMR(NI-R(L))/ZX 
0Z=(Z(N)-Z(L))/ZX 
OT«(T(N)-T(L))/ZX 

70 L»L*l 
IF(N-L) 100,90,80 

80 CODE(L)«0.0 
R(L)«R(L-1)*0R 
Z(L)»ZU-1)*0Z 
T(L)-T(L-1)*0T 
UR(L)*0.0 
UZ(L)«0.0 
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I 
I 

I 
\ 

GO TO 70 
90 WRITE (6*2004) (K, CODE I K ) ,»( K| ( Z ( ft) »UR(K ) VUZ (K) t HK) tK-NLtN) 

IF(NUMNP-N) 100tL10«60 
100 WRITE (6,2005) N 

CALL EXIT 
110 CONTINUE 

WRITE (6,2006) 
N«0 

130 READ (5,1004) H, I I X( H, I) , IM ,5) k ( SIGI (M, I I « I «1,4) 
ZX=M-N 
DO 135 1=1,4 

135 S(G( I)s(SIGI(M,I)-SIGI(N,m/ZX 
140 N=N*1 

IF (M-N) 170,170,150 
150 IX(N,l) = IX(N-l,l)«-l 

IX(N,2)=IX(N-1,2)«1 
IX(N,3)«IXIN-1,3)41 
IX(N,4)>IX(N-1,4)4^1 
IX(N,5)=IX(N-1,5) 
DO   160   1=1,4 

160   SIGKN, I|sSIGI(N-l,II*SIG( I) 
170   WRirE(6,2007)   N, ( I XIN, I) , I = 1 ,5), ( SIGKNt I ) » 1-1,4) 

IF   (M-N)    180,180,140 
180   IF   (NUMEL-N)   190,190,130 
190   CONTINUE 

IF   (NUMPC)   290,310,290 
290   WRITE   (6,2008) 

DO   300  L»l,NUMPC 
READ (5,1005) IBC(L),JBC!L ) .PR(L,I),PR(L,2) 

300 WRITE (6,2009) IBCtL),JBC(L),PR(L,I),PR(L,2) 
310 CONTINUE 

J=0 
DO 340 N»1,NUMEL 
MTAG(N)=0 
SIGI(N,5)«0. 
SIGI(N,6)«0. 
SIGI(N,7)«0. 
DO 3.0 I »1,4 
00 325 L=l,4 
KKMABSI IX(N,I)-IX(N,L)) 
IF (KK-J) 325,325,320 

320 J«KK 
32 5 CONTINUE 
340 CONTINUE 

MBAND«2»J»2 
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I 

! 

I 

I 

WRITE(6«1007)   MBANO 
00 350 N«ltNUHNP 
B0(2»N-n«0. 

350 B0<2*N»=0. 
C 

SRl=l.O 
SR2=0.0 
00 500 NNNsl.NP 
KKK = 0 
CALL !*TIFF 
CALL BANSOL 
CALL STRESS 
00 400 N'ltNUMNP 
NN=2*N 
BO(NN-l»«BO(NN-n*B<NN-l» 
B0(NN>«BO(NN)»S<NN) 

AOO CONTINUE 
WRITE (6* 2010 I (N»B0l2*N-n tB0(2*NI«N«l»NUMNP) 
IF(KKK.EO.O) CALL EXIT 

500 CONTINUE 
GO TO 5 

C 
1000 FORMAT U8A<»MI5t2Fl0.2, 2 I 5) 
1001 FORMAT (II5,IF10.0) 
1002 FORMAT (6F10.0» 
1003 FORMAT (I5,F5.0,5F10.0J 
1004 F0RMAT(6I5»4F10.0) 
1005 FORMAT (2I5f2Fl0.0» 
1006 F0RMATIA6) 
1007 FORMAT! • BAND WIDTH FOR THIS DATA •  •  , 15 I 
2000 FORMAT (1H1 18A4/ 

1 30H0 NUMBER OF NODAL POINTS  13 / 
2 30HO NUMBER OF ELEMENTS 13 / 
3 30H0 NUMBER OF DIFF. MATERIALS  13 / 
4 30H0 NUMBER OF PRESSURE CARDS  13 / 
5 30H0 X-ACCELERATION E12.4/ 
6 30H0 Y-ACCELERATION E12.4/ 
7 30H0 NUMBER OF APPROXIMATIONS  1121 

2001 FORMAT (17H0MATERIAL NUMBERf 13, 15H, MASS DENSITY! E12.4I 
2002 FORMAT!16H0ELASTIC MODULUS 14X 2HNU 8X 8HC0HESI0N 2X 14HFRICTI0N A 

*NGLE/(2E16.5«2F16.5I) 
2003 FORMAT (111H1N00AL POINT        TYPE  X ORDINATE  Y ORDINATE  X LO 

IAD OR DISPLACEMENT  Y LOAD OR DISPLACEMENT  PORE PRESSURE ) 
2004 FORMAT (I12*F12.2,2F12.3>2E24.7,F15.3) 
2005 FORMAT (26H0N0DAL POINT CARD ERROR N# 15) 
2006 F0RMATI96H1ELEMENT NO.     I     J     K     L    MATERIAL    X-ST 

♦RESS    Y-STRESS   XY-STRESS    Z-STRESS) 
2007 FORMAT!112,416,1112,4F12.31 
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200«   FORMAT (29H0PRESSURE   BOUNDARY  CONDITIONS/   40H             I             J           PRESS 
♦URE   I PRESSURE   J                                                                                                               » 

2009 FORMAT (2I6,2F12.3I 
2010 FORMAT (1.2M1N.P. NUMBER 18X 2HUX 18X 2HUV / (1112»2E20.71 I 

END 

■1.1 



c 
c 

SUBROUTINE STIFF 

IMPLICIT REAL»8(A-HfO-Zl 
COMMON ACELRtACELZtVOLtTEMP, SIGI(400,7),HEOI It)tEIt«12),ROI12)« 

*R ( 500) , Z ( 500), UR (500) tUZ ( 500) «CODE ( 500), T (500) t PRUGO ,2 I, 
*NUMMATtNUMPC,NvMTYPE,KKKfNUMNP«NUMELffNNN, 
*IBC(100),JBC(100),MTAGI400) 
COMMON/ARG/ RR(5),ZZI5)tSI 10,10),P(8)tST(3t10)tCI3t3)tSIGIT),EE(4) 
*,B0(1000),SRI,SR2, 
«RATI0i400),LM(4),lX(400,5),XC,YC 
COMMON /BANARG/ MBANOvNUMBLK,B(106),A(108,5«) 

REWIND 2 
NP = 27 
N0»2*NB 
N02=2*NO 
STOP=0.0 
NUMBLK«0 
00 50 N=1,N02 
B(N)=0.0 
DO 50 M«1,N0 

50 A(N,M)=0.0 

60 NUMBLK«NUMBLK*l 
NH=NB*CNUMBLK*l) 
NM=NH-NB 
NL«NM-Nfl*l 
KSHlFT«2*NL-2 
DO 210 N*1,NUMEL 
IF (IX(N,5)I 210,210,65 

65 DO 80 I«l,4 
IF (IX<N,I)-NL) 80,70,70 

70 IF (lX(N,n-NM) 90,90,80 
80 CONTINUE 

GO TO 210 
90 CALL QUAD 

IX(N,5)«-IX(N,5) 
IF(VOL) 100,100,110 

100 WRITE(6,2000) N 
ST0P«1.0 

110 MM«4 
IF(IX(N,3)-IX(N,» 1) 130,120,130 

120 MM«3 
130 00 140 1=1,MM 
140 LM(I)*2*IX(N,I)-2 

DO 200 1=1,MM 
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I 
I 
I 

00   ?00   K-l,2 
II-IM(IItK-KSHlFT 
KK«2»I-2»K 
Atlll«B(lll»PIKKI 
00   200   J-ltMN 
00   ?00   L-l,? 
JJ-LHIJML-1U1-KSHIFT 
LL«2«J-2*l 
IFUJI 200.200.ITS 

I7S IffNO-JJI ie0.l<»S.l9S 
\no  WRITE (6.20011 N 

STOP-l.O 
GO   TO 210 

19S   A(||.JJI*Ani.JJl*SUK.LLI 
200  CONflNUE 
210  CONTINUC 

DÜ  220  N-NL.NM 
Ka2«N-KSH|FT 
A(K|.AlK|*ul(NI 
fl(K-ll-ftlK-ll*UitNI 
MNI-O. 
U2INI-0. 

220  IH»IM»0. 

IF   (NUMPC)   224.I10.22S 
22S  00   100  l«ltNUMPC 

IMKIil 
J-JftCIU 
nR-/ni-/iji 
OI»RUI-RtII 
PP2MPRll.2MPRU.in/«. 
PPl>PP2»PRU.ll/6. 
PP2-PP2*PRU.2>/*. 
II-2»I-KSMIET 
JJ«2PJ-RSM|fT 
IMIII   26S.26S.2IS 

2SS   IPIII-*1DI  260.260.26S 
260   A(n-Ii-B(ll-1MPP1*0R 

RIIII-RIIII*PP1*0Z 
76S   IMJ^I   S00.300.270 
270   IMJJ-NOI   27S.27S.300 
27S  RIJJ-1I'(IIJJ-|I*PP2*0R 

RIJ.,I«IIUJI»PP260I 
300  CONTINUE 

110 00 600 --Nl.NM 
If   IM-NUMNPI 31S.31S.600 



c 

f 

315  U»UMM) 
N»2*:i-1-KSHIFT 
IF   ICOneCMII   390«400t3l6 
If   (COOEIMt-l.l   317V370«317 
IF   ICnOEtM|-2.|   318t)90t3l8 
IF   (COOE(M)-3.)   390,3i0.190 
CALL   MOOIFYlA,B.N02,»*8ANO,N.Ul 
CO   TO  400 
CALL   MOD|FVUt6fND2fMftANO,N(Ul 
U«UI(M| 
N-NM 
CALL M00|FVU,B,ND2.NBAN0.N.UI 
CONTINUE 

fSINIfUfNtNI»N«|tN6ANDItN«tf 

00  420  N-I.NO 
«■N^NO 
8INI«B|KI 
8(KI»0«0 
00 420  N«ltNO 

1i 

316 
317 
»I« 
370 

380 
390 

400 

NRITE   121 

420 

480 

NO I 

AIN«NI*AIKVM| 
AIJC,«1-0.0 

IF   INN-NUNNPI 
CONTINUE 
ACEIR-O. 
ACELI-O. 
NUNPC-0 

60t480t480 

IFtSTOP I   490,900.490 
«90  CALL  EXIT 
500 RETURN 

2000 FORMAT (26H0NECATIVE AREA ELEMENT NO. 14) 
2001 FORMAT (29H08AN0 MIOTN EXCEEOS AlL0UA8LE 141 

ENO 
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SUBROUTINE OUAO 

IMPLICIT   REAL*SIA-HiO-n 
COHHON ACElRtACELZ «VOL t TEMP,   SIGIUOO»7l t HEOl 181 »CUf 121 tROI 1211 

•RI500»./(%00l,URI*0OI.U/|S00..fOü£(*.O0I.T|500»tPRIIC0t2lt 
•NUMMAT.NUMPCtNfMTVPEtKKKtNUMNPtNUNCLtNNNt 
• IBCt lOOItJBCIlOOIfMTACUOOl 

COMMON/ARC/  RR(9lt22l9l»SltOtlOltPIBIvSTIl(10lfCllf9ltSIC(7lvEEI4l 
•tBOf10COItSRltSR?t 
•RATI0f400ltLMU|*|XU00t9l»XCtVC 

COHMON   /BANARC/   NBANOfNUMBLK»Bl10BItAClOBtB^I 
DIMENSION  UUI.vm 

CALL   STRSTR 
nn DO JM.IO 
ÜÜ   120   I-I.3 

120   STU.JI-G. 
on 130 i-itio 

130   SII.JI-O. 
on uo IM** 
NPP>1X(N,II 
RRIII«RINPPI 

1*0   Z/(M-/(NPP| 
xC>tRRII)*RRI2l*RR<3l«RRt*M/*« 
rf •!//( n»//l2IWZI3l»/ZI«M/4. 
RRISI-XC 
riifi«vc 
K»B 
JM 
I-* 
LMI3I-9 
NT«* 
IffIXlNt3l-lX(Nt*ll    160*150*160 

190   NT-I 
LNI3I-9 
1*1 
K-3 
J«? 
XC*(RRni*RRf2l»RR|)ll/). 
VC«ll2ftl*llltl«ltCfll/S« 
MfflaMIH 
tt(fl«ftCII 

160   On   200   UN-I,NT 
LMf 11«2*|-l 
IMJ2|.2*J-1 
uin>/zf ji-zzui 
U(2)-ZZfKI-ZZfII 
•Jf 3I*ZMM-ZZUI 
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I 

I 
vm>RR(K)-RRUI 
vm-pftm-RRU) 
Vl3l«RRUI-RRt II 
ARfA-IRRI Jl*U12l«RRMI*Ulll«RR<5l*U(lll/2. 
VOL-VOL^ARfA 
CONM-.75/ARFA 
XNT-NT 
COM-2#0/XNT 
COM-COM^COMM 

00   180  L«lfl 
tl>lN|LI 
STCUIII-STIl.llinilLIKON 
SH?,IIMI-Sfl?.l!M»»VlL»»COH 
Sri3vIII«STI3(IIMV(LI«COM 
STM,||MI-Sfl3flUIUüUI*COK 
00   ISO  M«ltS 
JJ-LMIMI 
sttif jji«siiitJji»(uai*ciitii*uiNi«vtLiKiif3i*viMi«vaMCf itii^u 
HM|*UILI»Cll.JI»VIHn«CO»«N 
Slll«JJM)*SllltJJ*llMUll.)*Ctl*2)*VfM|*VlU*COf)l*UINt*V(ll*C(2t 
l3l«Vl«l*Ulll»ClltJI»ütMII»C0HM 
SI II»l.JJ»ll«Sni»l,JJ»llMVlL»»CI2»2l»¥l»<l»UUIK0.1l»Ul«l»üUI» 
lC(2t3l«VlM|»V(LI*Cf2t)t*UINn*C0NM 
S(JJ»ltlll*StlItJJ*ll 

180 CONTINUE 
l-J 
J-JM 

200 CONTINUE 

tFllXtNv3l-IXfN9%ll 220f290»220 
220 00 2*0 I«li2 

KK-10-1 
00 2*0 K«1VKK 
r.C-SlKK*l(KI/SIKK*|tKR»ll 
00 230 J*lt3 

230 STIJ,Kl-ST|J,m-CC»SHJ.K*MI 
00 2*0 J-ltKK 

2*0 SIJ.M-SIJfM-CC»SfJ.KK»ll 
290 CONTINUE 

ll«C 
IFINNN.EO.il   GO  TO   260 
II ■* 

260  SIGfll«-SICI(Ntll*ll*TEMP 
SIGf2l —SIGI(NtIU2l*TEMP 
S1GI3I—SIGIINttt«3l 
00  920   I»It8 
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(M ll-C.O 
DO  SIO   J»l.3 

510   P(l l«Pltl*STU*ll*SlGUl 
520 ptn-pm«voL 

nx»vnL»Ar.ELR»RO(MTVPEIM. 
0Y-vril*Af.EU»RniHTVP6l/4. 
Of!  510   I«lt4 
P(?»II-Pi?»Il*OV 

530  P(2*l-ll-Pf2*1-II»DX 
RfTURN 
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SUBROUTINE   STRSTR 

IMPLICIT   RtAL»8U-H,(W» COMMON  ACELR«ACELI«VOLtTEMRf   S!Gl UOOt 71 tHEOUS) f EUt 121 »ROI I2lt 
*RI9001.Z(9001•URI9001tUZt90011CODEISOOItTtSOOItPRIIOOf211 
•NUMMAT.NUMPC.N.MTVRE.KRK,NUMNP,NUMtLfNNN. 
• IBC UOOI tJBCC 10011MTAGUOOI COMMON/ARC/  RR19)tZZ(9lfSllOflOI«P(Bl.STOflOlfCriflltSIGITIfEEUI 

•RAT!OI400l.LM«4l,UI<»00.9I.RC,VC 
COMMON  /BANARC/   MBAND.NUMBlR.BflOBI.Al 108.9*1 

l-IXIN.n 
J«IX(N.2I 
MtXINfli 
L-IX(N,4l 
MTVPE*IX(N.9I 
VOL*0. 

TFMP>nill«TUI»T(RI«TUII/4.0 
00  90 XR-l.* 
EEUKI-E(KKtNTVPEI 
IFIMTACINIt  60.60.TO 
CC«ltttl#<tffflffll 
M«EEm/ll.-fcM2l"2l 

cii.n*cnMM 
C(l.2l*CnMM*CC 
C(1.)I>0. 
ClttttKlltil 
C(2.2l-Cll.ll 
CI2.)I«0. 
cn.n-o. 
C()«2I«0. 
C(1.3)«.9*COMM*(l.-CCI 
CC-OTAN(EE161/97.2961 
BB«DS0RTI9,0*12.0«CC*CC) 
EF(6I-CC/BB 
Efltl«l*8«tlfl/M 
CO  TO 900 

70 CC-0TANIEE(6|/97.296I 
RB*OS0RT(9.0*12.0*CC*CC) 
FEC6I-CC/BB 
EF(3l«3.*rE()l/BB 
CC«2.*(l.»EE(2ll/l9.-6«*EE(2n 
0D«(SIGl(N.l)-SIGIIN.2ll/2. 
RJ2«(00*DD*SIG1(N.3I**2I/I1.-3.*IEE(6I**2I) 
BJ2«0S0R1(BJ2I 

90 
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I 

B.Jl>1.5*tSICI(N«l)*SIGIIN,?n-3.*tfeU)*BJ2 
r)0*BJl/RJ2 
BB«1.»9.*IEE(4I«*2I*CC 
Cr.-3.*FEUI«CC-DO/3. 
00-tEm-00/6. 
Hl«.5«Cr./(BB*BJ2l 
H2-00«CC/BB-EEI2l«EEI3l/(BB*BJ2*;i.-2.*EE(2in 
H1-.5/(BB*BJ2*BJ2l 

900 

lt«Pflll/ll»Mflfll 
r.n.ll-RB»J l.-M?-2.«Ml»SICMN.ll-Hj»fSICHNtt»**2ll 
CU,7l--RB*(H2»Hl»(SIGIfN.n*SICIfN.2n*H3*SlGIIN»n*SICIIN*2ll 
Cl |,l)--RR*(Hl*SICIfN,ll«H)*SIGflN,l)*SlCMNv)l) 
Clttll«CCtttl 
CI2f2)-BB*ll.-H2-2.*Hl«SIGMN«2l-H3«(SIGIINf2l*#2ll 
C(?.))>-nR*(H|*SICIINv)UHl*StCIIN«2l*SPGIINv3ll 
citfii«cttfii 
ciftaiKittii 
CI1,1l-nn*f.5-H3*ISIGIfNt)l**2ll 
«FTURN 
END 

! 
51 



SUBROUTINE HOOIFV(A«B«NE0tMBANOfN.UI 
IMPLICIT REAL*BIA-HtO-l| 
OIMfNSION All08t94l»BII08l 
00 250 M-2.MBAN0 
K«N-M*l 
IFIKI   215,235*230 

230   H(KJ-B(K)-AfK,MI»U 
A(K,MI-0.0 

235  K-N*M-l 
IMNEO-KI   250,240*240 

240   HU»«BJK|-AIN,M»»U 
A(N*MI-0«0 

250 CONTINUE 
AIN*1I«1.0 
B(N)*U 
RETURN 
END 
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SUBROUTINE BANSOL 
IMPLICIT REAL*8U-Hfn-Z) 
COHMflN  SRANARG/  MMVNUMBLK «BU08I» AliOSf 54) 

NL-NN^l 
NH-NN^NN 
RFWINO   1 
RFWINO  2 
NB-0 
GO   TO   150 

100   NR«NB*1 
Ü0   1?5  N-ltNN 
NM«NN«N 
BCNI-BINM) 
B(NMI«0.0 
00   125   M-l.MM 
AINtMI-AINMtM) 

125   AINM«M)»0.0 

IF   INUMBLK-NB)   150.200tl50 
150   READ   (21   (B(NltlAINfM)»N>lvMM|vN«NLtNHl 

IF   (NBI   200tlC0t200 

20C   00   300  NMtNN 
IF (AIN.II) 22^.100.225 

225  B(NI»B(N)/A(N,1) 
00  275  L-2.MN 
IF UIN.LII 230.275*230 

2^0  r-A(N.LI/A(N.ll 
I«N»L-l 
JsO 
00 250 K«l,NN 
J«JM 

2S0 A(|fJ)-AIItJ|-C*A(N»K) 
B(I)>B( ll-A(N,ll*B(NI 
AIN.LI'C 
CONTINUE 
CONTINUE 

275 
100 

i75 

MOO 

IF INUMBLK-NB» 375*400*375 
WRITE (1) (B(N).(A(N*M)*M«2V 
CO TO 100 

MM).N«I*NN) 

00 t*bC   M»ltNN 
N«NN*1-M 
00 425 K-2tMN 
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1 

NM«N«NN 

ASO A(NM.NRI-HtNI 
NB>NH-1 
IF (NBI <>79f500t479 

«75 BACKSPACF I 
RFAO (1) IBIMtUCN.M|fH-2,MMI,N-l,NN» 
BACKSPACE 1 
GO TO 400 

c 
500 K>0 

UO 600 NH-lfNUMBLK 
DO 600 N-lfNN 

NM«N«NN 
600 B(K»-A|NM,NBI 

C 
RETURN 
FND 



SUHKOüTINC   SfftESS 
IMPl KIT   Bf Al •SIA-M.O-II 
f'IMMUN   ACM M, ACM /.VOL. ff Ml-.    SIGI (-0Ot M tHf OUSI tf Ut 1?) fKOUl I • 

• w | SOOI t /f Scr. I vURI%00 11U/ I SOOI «Cmif I 50011 f 1400»tP«UCCt?11 
• NU^MAf •NlfWPC»N««(TVP|(KKK«NUMNPtNUMFI ,HHH, 
•IHf • 10CI .JHCnCOl.Mf ACUOOI 

f n^MUN/ABG/   *Rm./Zm«StlOtlOI.P(fll*SM)*10»fC(3»S)*SICmtEEI*) 
•tR0(1000l«SRl.SR?t 
•BAT|OI«.OCI.lM|4i»,l«l*OO.S,.KCtVC 

CnNHON   /BANARC/   MRANOtNUNRLRtSI|0*ttAl108tS%l 

ini-o. 
SR-1. 
NUMR*0 
HPRINT-O 
KKaO 
00   300  N-l.NUMfl 
RATinfNI*!. 
IIINftMMMIIMlNffll 
MTVPE«IXIN|5I 
CALL   OUAO 
NNM 
IM IHN, 1I-|XIN.«II    l70tl6C.170 

160   MN«) 
I7n nn IRO I»I.I 

HR||l>0« 
nn IRO j-itHM 

JJ"2*lXtN»JI 
180 BRIII-RRf n»Sril.flMBIJJI»STf|,||-ll*Bf JJ-ll 

00 190 1-1»! 
SIGIII-O. 
nn 190 j-it3 

190  S!G(ll-SICIIMCIItJl*RR(Jl 
00   195   |«tt1 

19!>   SIGHN.III-SIGIIN.IUStClli 
nn«ISIGIIN,5t-SIGIfN96f1/2. 
Aj?-IOl>»no»SIGHN.T»»»^l/ll.-J.*lfEI«l»»2ll 
AJ?«0S0RTfAJ2) 
AJ|>l.S*ISICilN,SI»SIGIIN(6ll-3.*CII«)*AJ2 
PAti«AJt«ffC4l*Ai| 
IFIMTAGINI.EO.OI GO TO 200 
IMNTACIM.FO.?! GO TO 100 
nn-oARSiFAtL-eEnn 
CHECK*.02*EEf)) 
IFIOO-CHFCK) 300t300t196 

196 KKX>1 



CM<CHiCK/no 
IM(.H-SMI ivr.ioo.ioo 

on m IOO 
?00 CONTINMl 

IFIMlL.LT.tFIlM   CO   fO   ItO 
KKaKK^l 
no-ISIMINtll-SICMN.?!!/?, 
^J?«JO()«nO«SICIlN.ll»»?l/II.-l.»IFfl*il«»?M 
nj2>OSOKTfllJ2l 
«Jl-l.S»ISICMN.ll»SICHN,7n-J,»eM«l»BJ? 
*AA«BJ?*BJ2 
B6n»ftJ?*AJ? 
FFF*1.-3.*EEUI*FEUI 
CCC-   ISICIINtll-SIGIIN.2ll*(SICIIN,S)-SICIfN(6IIM.«SlCIINt3l*SIGI 

•IN.TI 
OOO-SICnNtlUSIGMN«?! 
CGr.-SIGIINt»l«StGlfNt6l 
FF-FFF*FFF 
GG*GGG«GGG 
UO*ODD*OOO 
CF»2.2**EEm*EEI4) 
AA>AAA*fF-EF*00 
nR-BBB*FF-EF*GG 
CC*CCC*FFF-EF*000»GGG 
nn«i.)«EE(4i«EFn)*ooo 
FF-l.MEEf4»*EEm*GGG 
GG«EEI)I*EEI3I 
AAA*AA«BB-2.»CC 
BBR«AA-CC«00-FF 
CCC-2.*00-GG«AA 
GGG"BBB*BBB-AAA«CCC 
GGG-OSORT(GGGI 
IFfAAAl   220t210t220 

210 RAT|0(N)«.9*CCC/BBB 
GO  TO  300 

220  AA-RBB/AAA 
BB«OARSfGGC/AAAI 
RATiniNI-AA-RB 
IFfRATlniNI.LT.O.I   RAT|0fNl«AA^RR 
IFIRAnniNI.GE.l.l   RAT 101VI-.99999 
IFfRATIOfNI.LT.O.I   RATIOfN)«0. 

300  rONT!NUF 

IFtKK.EQ.OI   GO  TO 420 
00   3)0  N-ltNUMEL 
IFfMTAGCNI.GT.OI   GO  TO  350 
nO-RATIOIN) 
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|F|UI)-SRI   305t350«)50 
^OS   SR»Oü 

KKK'l 
*so coNfmui 

IflSH.lT.O.l»    SR-O.l 
IFINUM^.FQ.OI   GO  TO  «20 

C 
?60   DO   370   N«l,NUMEl 

IF(MTAGCNI.CT.O)   GO   TO  370 
IMRATiniNI.LE.SR)   GO   TO   355 
no>RATin(NI-SR 
IF(00-.05|   355*355*370 

355   MTACINtM 
370  CONTINUE 

r 
^70  CONTINUE 

00   «10   N>.*NUMNP 
!I«2*N-l 
R( I Il-R( m*SR 

410   Ft! ll»l»»R( IU1I*SR 
DO  600   N>1*NUMEL 
i-ix(N*n 
J»IX(N*?) 
MtXlNttl 
L>IX(N*4I 
MTVPE.IX<N*5I 
IF(K.EO.L) GO TO 460 
XC>(Rm*R(J)*R(K)*R(L))/4. 
VC*IZ(II»ZCJ>*Z(K)*Za)»/4. 
GO TO 4 70 

460 XCs(RiII«-R(J)»R(K||/3. 
YC«(Z(n«Z(JUZlKII/3. 

470 CONTINUE 
00 450 I =»1*3 
11»1*4 
SIG( n«s(Gi(N*m-siGi(N*n 
SIGI(N*m«SIGm*U.-SR) 
SIGI(N*III«-SIGI(N«in 
SIGI ll«Slfil n»SR*SIGMN*II 

4so siGicM,n»siG(n 
SIG(7I>FF(2)*(SIG(1I«-SIG(2M 
DO   455   1x1,4 

^55   fcH Il = t(I*WTVPEl 
IF(MTAG(NI.EO.O)   GO   TO  500 
CC = DTAMEEm/57.296» 
BB*DSÖRT19.0*12.0*CC*CCI 
FF(4)=CC/BB 
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nn-isiGlDTSiGmi/?. 
nj2<>(nO*no«SIGm«*2l/U.-3.f(fEUI**2ll 

MM n*.s*m(.m«sM.m»- ».mm^Rj«' 
soo si(.i(N,^i«si(.(n 

CC«(SICIll«StO<2M/i« 
Rn*(SIG41)-Sir.(2t |/2. 
CR>0S0RT(RB**2^SIGC3)**2) 
SI6(4)*CC4>€R 
SIG(5)«CC-CR 
SIG(6}«0.0 
IF   ((BB.F0.0.0).AND.(SIG(3).EQ.0.0II   GO  TO  510 
SIG<6)»28,698«0ATAN2(SIG(3)tBB| 

510 CONTINUE 
IFIHPRINTI 520,520t550 

520 WRITE(6,20001 NNN 
MPRINTx50 

550 MPRINT=MPRINT-l 
WRITE (6» 2001» N.XCtVCttSIGnif I'ltTltMTAGfNI 
lF(MTAG(N).EQ.O) GO TO 560 
D0-(SIGI(Nt5l-SlGI(Nt6ll/2. 
RJ2»<OD*DO*SlGl(N,7l«*2)/(l.-3.*IEEU>*»2n 
RJ2«OSQRT(BJ2} 
TnL=TOL*BJ2 
GO TO 600 

560 SIGm*EE(2)*(SIGMNv5)*S!GI(Nf6M 
BJ2« OSQRTCtCSIGl(N.5l-SlGI<Nt6l)**2*ISIGICN,6l-SIGI7ll**2*«SIGIT> 
*-SICI(N.5l)*»2»/6.0*SIGnN,7)**2l 
T0L*T0L*BJ2 

600 CONTINUE 
SR2= (SRl*SRI 4- SR2 
SRI* (l.O-SRI ♦ SRI 
WRITE(6(2C02) TOL.SR •NUMRtKKtSR2 
IFfTOL-l.l 660,660t650 

650 KKK=I 
GO TO 700 

660 KKK»0 
700 CONTINUE 

11=0 
00   710   IMtNUMEL 

710   IFIMTAGIU.GE.ll      II'IIM 
IFIKK.GE.NUMELI   CALL   EXIT 

800  RETURN 
C 

2000   FORMAT!1H1/ 
♦36H   STRESSES  AFTER   APPROXIMATION  NUMBER   14//// 
♦7H  EL.NO.   7X   IHX   7X   IHY  4X   8HX-SIRESS  4X   8HY-STRESS   3X  9MXV-STReSS 
♦   2X   10HMAX-STRESS   2X   10HMIN-STRESS   7H     ANGLE   4X   BH2-STRESS  5X   7HPL 



♦ASTICl 
2C01 FORMAT ( I 712F8. 2« IP5F12.4 tOP lf7 . 2«IPEW.^t 1121 
2C02 f-QRMAT(^9H0THE UNBALANCED LOAD Af THIS STAGE IS  EU.5// 

♦47H THP RATIO FOR CORRECTION OF STORED STRESSES IS FIG.4// 
♦31H THE NEXT ELEMENT YIELDING IS    U/ 
♦91H AND THE TOTAL NUMBER OF ELEMENTS THAT CAN YIELD WITH THE LINEA 
*P ADDITION OF TOTAL LOAD IS      14/ 
♦50M LOAD UP TO THIS STAGE AS A FRACTION OF TOTAL IS      F20.5   » 

END 

I 

I 
I 
I 
i 
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3.4   Kxiimpl«' 

NiiKhdi (19S7) solved the problem of an elaHtiu-pcrfcctly plaHlic wodHO UIKUT 

uniform loading on one face (Fig. 3.2).   Plane strain conditions were considered. 

The wedge material was assumed to yield according to Von Mises' yield criterion. 

This type of material is a special case of Mohr-Coulomo material having the angle 

of internal friction <t>   0. 

Figures 3.3 and 3.4 show the theoretical and computed results for the dis- 

tribution of radial and circumferential stress at various stages of loadings.   The 

angle i/» denotes the angle upto which the yielding has progressed from the boun- 

daries.   Fig. 3.5 shows the radial strain distribution at various stages. 

Generally the agreement between results computed by the method outlined 

and the exact analysis were found to be good. 
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CALCULATION    OF    STRESS    RATIO 

FIG      3.1 
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FINITE ELEMENT IDEALIZATION FOR ELASTIC-PLASTIC WEDGE 

FIG 3.2 
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CHAPTER IV 

COMPUTER PROGRAM FOR ANALYSIS OF JOINTED ROCK 



rhaplor IV.   Coiniuilrr l>rtit;r:ini Foi AnnlyHlH ol JolnltMi Koik 

4.1   OrKanty.atton 

The computer program described htfl Is based on the theory described In 

Chapter I and II.   The rock mass is considered as a linear elastic material in the 

direction of compressive stresses and is assumed to have no resistance to defor- 

mation in the direction of principal stresses.   The program corrects the discrep- 

ancy in the method presented by Zienkiewicz et al (1968).   This was pointed out 

towards the end of Chapter I.   It makes allowance fur the boundary conditions, 

residual stresses, stresses due to temperature change, and varying pressure 

boundaries.   This program also us« A the quadrilateral elements and generates 

stiffness the same way as that described in Chapter III. 

The principal program called MAIN controls all the data input and control 

information.   It does the system initialization, prints the control data, geometrical 

and material properties.   MAIN calls the subroutines for stiffness, solution of 

equations and stress calculations. 

4.12.   Stiffness Matrix 

Stiffness matrix for the analysis is computed in blocks by the subroutine 

STIFF.   For element stiffness, it calls QUAD for triangular and quadrilateral 

elements and ONED for bar elements.   Direct stiffness technique was used to get 

the total stiffness.   Equations are modified for displacement boundary conditions. 

I 
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4.13. Load Matrix 

Load matrix for the analysis is computed in LOAD subroutine.   The varying 

pressure boundary is taken into account.   The load matrix is modified in the LOAD 

subroutine for each iteration performed.   This accounts for the nonlinearity intro- 

duced by progressive cracking by considering the change in element stiffness as a 

pseudo load. 

4.14. Calculations of Displacements 

After the stiffness and load matrices for a stage have been computed, the 

resulting equations are solved by calling subroutine SYMBAN.   This subroutine 

was developed to take the advantage of the fact that stiffness matrix remains the 

same throughout.   Gaussian elimination technique is used to solve the equations. 

The elimination is done once for all and the reduced matrix stored on auxiliary 

units.   Solution for each iteration consists of back-substitution only.   This approach 

results in considerable economy in machine time. 

4.15. Calculations of Stresses 

After the displacements have been computed, the stresses are computed 

using the constitutive law.   A change in the minor principal stress corresponding 

to Poisson's effect has been introduced when one of the principal stresses was 

compressive and others tensile. 
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4.2.   Input Data Preparation 

1. Control Card (A6).   This card will carry the characters START in columns 

1-5.   This will start the processing of the data deck which consists of the 

following set of cards. 

2. Job Title (72H).   This card will give the descriptive ider tification for the job. 

3. Control Information (415, 3F10.2, 15, E15.4) 

Information Columns 

Total number of nodal points 1-5 

Total number of elements                                     6-10 

Number of different materials                             11-15 

Numl»or of pronHiire houmhiry ciircls                   Hi - 20 

Body Force in X-direction                                   21-30 

Body Force in Y-direction                                  31 - 40 

Reference (stress-free) temperature                41 - 50 

Number of Iterations                                           51 - 55 

Tolerance to Convergence                                  56 - 70 

4. Material Property Cards.   One set of cards must be provided for each material. 

In each set: 

a. First card (215, F10.3, 15) will give the following information: 

Material identification number 1-5 

Number of temperature cards (8 maximum)       6-10 

Mass density of the material 11 - 20 
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Material code to designate materials 21-20 
which cannot take tension 

code =  1  for materials which cannot take tension 
0  for materials which can take tension. 

b. Subsequent cards, one for each temperature, the number being 

defined in columns 6-10 of the first card, will carry the following infor- 

mation (4F10.0): 

Information Columns 

Temperature 1-10 

Elastic modulus 11-20 

Poisson's ratio 21 - 30 

Coefficient of thermal expansion 31 - 40 

5. Nodal Point Cards (K, F5.0, 5F10.0) 

One card for each nodal point with the following information: 

Nodal point number 1-5 

Type of nodal point 6-10 

X-ordinate 11-20 

Y-ordinate 21-30 

XR 31 - 40 

XZ 41 - 50 

Temperature 51-60 

If the number in columns 6-10 is 

Zero    XR is the specified X-load and XZ is the specified Y-load 

1 XR is the specified X-displacement and XZ is the specified Y-load 
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2 XR is the specified X-load and XZ is the specified Y-displacement 

3 XR is the specified X-displacement and XZ is the specified Y-displacement 

All loads are considered to be total forces acting on an element of unit thickness. 

Nodal point cards must be in numerical sequence.   If cards are omittod, the 

omitted nodal points are generated at equal Intervals along a straight line between 

the defined nodal points.   The necessary temperatures are determined by linear 

interpolation.   The type of the nodal point, as well as XR, XZ, are set equal to 

zero. 

6. Element Material Cards (1215) 

These cards shall carry the material type of all the elements. Each card 

shall have material types for 12 elements in sequence. The material type 

for each element must be read in as no Interpolation has been provided for. 

7. Element Cards (515, 5X, 3 F10.0) 

One card for each element will provide the following data. 

Information Columns 

Number of clement 1 - 5 

Nodal point I 6-10 

Nodal point J 11-15 

Nodal point K 16-20 

Nodal point L 21-25 

Initial stresses: 
(I)   component In x-dlrectlon 31-40 

(li)   component In y-directlon 41 - 50 
(iii)   shearing stress on x-y planes 51-60 
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Nodal points ItJ,K,L are comers of each individual element in a counter- 

clockwise order for a right handed system of coordinates.   For triangular 

elements set nodal point L same as nodal point K.   The element cards 

must be In the numerical sequence.   Any cards that are omitted will be 

automatically generated in the program by incrementing each of the I, J, 

K, and L nodal points by one. 

8. Pressure Boundary Cards (215, F10.0) 

One card for each boundary element which is subjected to a normal 

pressure will carry the following information: 

Information Columns 

Nodal Point I 1-5 

Nodal Point J 6-10 

Normal Pressure at I 11 - 20 

Normal Pressure at J , 21-30 

As shown in the sketch, the boundary element must be on the left as one 

progresses from I to J.   Surface tensile force is input as a negative pressure. 

Output Information: 

The following information is developed and printed by the program: 

1. Reprint of input data 

2. Nodal point displacements 

3. Stresses at the center of each element 
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(. 4.3 Program Listing 
r * •**«*!!•■:. ************************** ****••*•«•«*«*****•********•***** 
r <■   TrtO   lUM^NSlON&l   ANftLVSIr   Of   A   Ml   TENSION   SYSTEM ♦ 
c        ••*   •. ««♦♦»»•♦♦»♦♦♦♦♦♦♦»♦»«.♦•♦♦»♦»♦♦•«.»♦»»»••»»♦•••♦♦•♦♦♦••♦♦•♦•♦* 

DOUB        PP FC IS IHN   S,C,B,A,P,ST,Sir,,il,V,CC,cJBtCRtAREAfCOMM,OUiOVfOLf 
1 )X,| r.XL.KRtFn^.TnLtUM.U/   iSlCItVOL.COMtMnROlZUMORUlvEtCOSAtSlNA 
?,('), U ftl .XC.YCfPRtACELRfACF.LZ|T^MPf T,   R,0,ROtZ 
l,l)->,l);f nT.M 

r.riMUJN   ftr.KRf ACH 7tTFMPt0.Rn(m ,R(<)C0ttZ(900ltT190CltPR(200f2)f 
IN I-'VJP.N'JMH .NUMMAl .NlIMPC.MTrPf »III »N.HEO« 18 t »NTCMO I f CODE (90011 
2P?r UOI • I ACI?C0I t JHCItOOIf NCMfcCK 

( nvw )N/SYSAKi;/uR(900l,UZ(f»00>,Sir.I('>00»6l,Cun800lflOLfVOL 
1 ,F(H,/*t 12| 

rnMM )N   /ARG/C(3.1l(S(l0«10)tSIG(AltP(8ltSTn«10lfRRI5ltZZ($li 
ixr.vcrrc \»,LH(4J, ix(800i5» 

CnMMJTN   /HANAKG/   MHANI),NUMBLK , BU 800 I . Af lOStS^I ,KKK , JA 
OATA   Wf'KIV6HSTART    ,6HSTüP      / 
DtFINF   FHC   M «iO.lSOO.UtNnK» ,?1800f?56tUtlOI 
(AU    f PXSrTI^CH, ?56t-!ill 

K   RFAI)(%f IfOAl      WdkOl 
irrw')Rrji.60.wo«n( i)»    on TO 30 
iruimm.EQ.wnRom)      STUP 
mi in 10 

40   JI-AP   (S.lOGni   HFn.NUMNPtNlJMEl.NUMMATvNUMPCtACELRtACELZtOtNPtTOL 
WHITF(^f?nOO)   HFn,NiJMNPtNUMELfNUHMAT,NUMPCtACELRtACELZtQtNPtTOL 

/♦o   DP   sj   M-l »NUMMAT 
l'l AD ('.,10011 MTVPF.NTCIMTYPI-ItRniMTVPEI .HTC1MTVPEI 
WRIII ('.,?i)01) MTYPrfNTr(^TYPt),Rfl|MTVPF»,MTC(HTVPEI 
Nl)«1C=NTr(MTYPt I 
-'Ai     (S,100?l    I (M I,J.«TVPF.l,J«l,4l,I»liNUMTCI 
NRITf   (ft,?0')?l    ( (FlitJfMTYPEItJ-!lf4»tI«l.NUMTCI 

SC   CPNTINUF 
WPITF   (6f?C03J 
1=0 
R(ll»0. 
ML»=0. 
T(L)=0. 

6^   h'FM?     (S.IOOIJ   N,CnnF.(NI,RINIfZ(NltUR(NlfUZINItTINI 
f|L=L*l 
ZX = N-L 
DR«(R(N)-R(tlI//X 
l>/«(Z(N)-ZU} »//X 
nT=(T(NI-T{Ll»/ZX 

70   L=L*1 
IF(N-l)    lC0,9G,fl0 

pc cno\ (L»=c.': 
Rlt)»R(L-l}^OR 
MU = Z(L-mr)z 
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T(l  IMll-l »♦OT 

GO   TO   70 
90   WHITE   (6.20(H)    (KtCnnE(K)«R(K)vZ(K),UR(K)«UZlKI«TIK)tK>NLtNI 

IF(NUMNP-N)    lC0ill0t60 
KO   WRITE   (6f20O5)   N 

CÄIL   FXIT 
110   CHNTINUE 

RFAIM 5, 1007)    (IX(Nt5)tN-I *NUHEL) 
WRITE   (f>f2006) 
N = 0 

13ü   RE4Ü(5*1C0^)   M*(IXIM(I)«I>1^)»(SIGI(M,II tl<l,3l 
IF(M.EO.l)   GO   TO   140 
2X=M-N 
DD   US   I»l,3 

US   SIG( I) = {SIGnM,n-SIGI(N.I))/2X 
HO   N*NM 

IF   (M-NI   I70fl70tl50 
ISO   I*(N,l)«mN-ltl)*l 

IXIN,?)«IX(N-lf2)*l 
!»(N,3»»IXIN-li3)*l 
IX(Nf4)-IX(N-lt4)4-l 
nn ibo i=i,3 

160   SIGI(N»I)>S1GI(N-1VIUSIG(I I 
170   WHITb(ft,?00/l   N»(lXlN,n,I»l,5)»(SIGMN»ll*I»lf3l 

IF   <M-N|   180»180,U0 
18C   IF   (NUMEL-NI   190,190,130 
190  CONTINUE 

IF   (NUMPC)   290,310,290 
290   WRITE   (6,2008) 

00   300   L»1,NUMPC 
RCarCi.lCCS) IBC(L),JRC(L),PR<L,l) ,PR(L,2) 

300 WRITE(6,20C9) IBC(L),JBC(LI,PH(L,1),PR(L•2» 
310 CONTINUE 

OH   <*<*0  N=1,NUMNP 
NN=2*N 
CU(NN-I)«0. 

^AO fUlNNI«0. 
J«0 
DO 340 N»l,NUMEL 
DO 340 I«I,4 
DO 325 L«l,4 
KK = UnS(IX(N,I)-IX(N,Ln 
IF (KK-J) 325,325,320 

320 J=KK 
325 CONTINUE 
340 OONTINUE 
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I 

WR1 TF(ftt?012»   MH^^|0 
ASO   CAI L    SMFF 

NCMECK«! 
KKK = l 
rail   SYMRAN 
KKK = 2 
nn  «soo iLL = lfNP 
CALL LOAD 
CAJ L SYMftAN 
Oil ^00 N = 1,NUMNP 
MN = 2*N 
ClHNN-1 )=CU(NN-l)*B(NN-n 

400 CU(N^»=CU(NN»*B(NN» 
WRIT6(^»2013I LLL 
WRITE(6,20lO) (N,B(?*N-n«B(2*NI*CU(2*N-l)fCU(2*Ntt N ■ ItNUMNP) 
CALL STRFSS 
IF{MCHECK,FO.O» GO TO 600 

SOO CONTINUF 
r,() T) 700 

600 WRITfc(6,20ll) Lll 
7GG CO TO 10 
999 hORMAT(IS) 
ICCC FORMAT n8A4/4I5f 3Fl0.2f I5,E15.A, 15» 
inn FORMAT (2I5,IF10.3,I5» 
1002 FOttM^T ««JFIO.S) 
1001 FORMAT (I5,F5.1,5F10.4) 
IOC* FORMAT ^I5,5X,3F10.4» 
1005 FnRMAT(2I5,2F10.3) 
1C06 F0RMAT(A6) 
1007 FORMAT!12151 
20C0 FORMAT (IHl 18A4/ 

1 30H0 NUMBER OF NODAL POINTS 13 / 
2 30H0 NUMBER OF ELEMENTS 13 / 
3 30H3 NUMBER OF OIFF. MATERIALS  13 / 
'* 10H0 NUMBER OF PRESSURE CARDS 13 / 
5 30H0 X-ACCELERATION  E12.4/ 
6 IDHO Y-ACCELERATION  E12.4/ 
7 30HÜ REFERENCE TEMPERATURE  F12.4/ 
R 30H0 NO. OF APPROXIMATIONS  15/ 
9 30H0 TOLERANCE FOR CONVERGENCE  E12.4) 

2001 FORMAT t17H0MATEMIAL NUMBER» I3t 30H, NUMBER OF TEMPERATURE CARDS» 
I II, 15H, MASS DrNSITY= El2.4tl6H, MATERIAL CODE» 15» 

2002 FORMAT (15H0  TFMPERATURE 10X 5HEC    9X 6HNU     10X 5HALPHA/ 
I(Flb.2,3EI5.5l) 

2003 FORMAT ( lOBHlNOOAL POINT        TYPE  X ORDINATE  Y ORDINATE  X LO 
IAO TR OISPLACfcMFNT  Y LOAD OR DISPLACEMENT TEMPERATURE > 

?CC4 FORMAT (I l2.Fl2.^,2F12.5,2E24.7fFl2.3» 
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20))^   Uli'MAT    (^6H0NniJAL    PflINT   f.AHL)   tKHOK   N-    15 1 
inoij   FOH^AT   CWHlFLtMFNT   NO. I J K L MATfRIAL 

1SICIXX SIGIYV SIG1XY I 
20C7   J-OHM&T   mi3fM6,lIl2f3Fl2.3l 
2008 FDRMAKPQHOPRESSURF   BOUNDARY   CONDIT lONS/^OH I J PRESSUR 

l^   I          PRESSURf   J» 
2009 Fi)HMAT(2I6,2FU.3) 
2010 rrrr^ATl 12H0N.P.NUMBER 17X 3Hl)UX 17X 3HDUY 18X 2HUX 18X 2HUV/ 

1(IU2,^F?0.7J ) 
2CII FORMAinSHO NUMBFR OF CYCLES TO CONVERGENCE =   151 
2012 rnRMAT(?BH BAND WIDTH FOR THIS DATA =    15» 
2C13 FnRMAT(30Hl RESULTS OF ITERATION  NO.-     I5///I 

FNU 
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■' .vmmmimmmammmmmmmri - 

SURRUUTINF STIFF 

nnURLE PRECISION S,C.B.A,PtSl,SIG,U.V,CC,B8,CRtAREAfC0«MtDU»0Vt0Lt 
inx,OY,XL,PH,FORfTnL.UR,UZ ,Slbl»VOL.COM,EtCOSAtSINA 
?fCU,ZZ,FF,XC.YC,PR,ACELR,ACFLZ,TfcMP,Tf R,a»KOTZ 
COMMON ACELR, ACFL Z,TEMP,0.RO( 12 ) ^("9001,2(900 It T(900 I tPR<200t2 It 
INUMNPfNUMELfNIJMMATfNUMPCfMTYPf ,LLL»NfHEO(l8l fNTCf 101,CODE(9001 t 
2MTC( 10) , IBC(200).JBCI2001,NCHECK 
CHMMnN/SYSARG/llR( 900 )fUZ( 9001 fSIG 1(900,6 I fCU( 18001 tTOLf VOL 
1,5(8,4,12) 
COMMON /ARG/C(3,3),S(10,IOI,SIG(6I,P(8I,STO,10I,RR(5I,ZZ(5I, 
1XC,YC,FE(3l,LM(4),IX(800f5l 
COMMON /BANARG/ MBANO,NUMBLK,B(1800 I,A( 108,541»KKK,JA 
0FF1NE FILE 1(50,1500,Ü,NBKI,2(800,256,U,101 
NB = 27 
ND=2*NB 
ND2=2*ND 
STOP=0.0 
MUMBLK=0 
JA = N02*( M8AN0M ) /1500M 
NBK=l 
DO   50   N=l,ND2 
DO   50   M=l,ND 

50   A(N,M)=C.O 
60   NUMBLK=NUMRLK+1 

NH=NB*(NUMBLK+l) 
NM = NH-NB . _     .   
NL = NM-NBM 
KSHIFT=2*NL-2 
DO   210   N=l,NUMEL 
IF   (IX(N,5))   210,210,65 

6S   DO   ftp   1=1,4 
IF (IX(N,I)-NL) 80,70,70 

70 IF (IX(N,I)-NM) 90,90,80 
80   CONTINUE 

GO   TO   210 
90   IF(IX(N,3)-IX(N,2))   95,85,95 
85   CALL   ONED 

IX(N,5I=-IX(N,5I 
MM = 2 
GO TO 130 

95 CALL QUAD 
IX(N,5)=-IX(N,5) 
ID = N 
WRITF(2MD) ((C( IIKtJJK),JJK=l,3l,EE(IIKl ,IIK»1,3I 

1 ,((S(JJI,KKI),KKI=l,8),JJI=l,e),((ST(|KK,JKKI,JKK»l,8l,lKK»l,3l 
2 ,(RR(JII),ZZ( JIII,JIIsl,4l,XC,YC,TEHP,V0L 
IF(VnL) 1^0,100,110 
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ico wkiTr(ftt?onoj N 
5Tnp«i.o 

11^ »v-t* 
1 F < I < ( v , 1) - I X ( N,'. M   13011 2C, I 30 

120  MM=3 
130  DO   UO   l=ltM^ 
UO   L^( 1)=2*IX(N,I »-2 

DD   200   I»1,M«< 
On  200   K»lt2 
Il=LM(I)*K-KSHIFT 
KK=2*I-2*K 
DO   200   J'l.HM 
DO   200   L«lf2 
JJ=LM(J)*L-II*l-KSMIFT 
IL=2«J-?*L 
IF(JJ)   200f200,175 

175   IFIND-JJI   |ft09lfSfl9f 
IRC   WRITE   (6,20011   N 

STnP»l.O 
GO   TO   210 

19S   A(II,JJ)=A( n,JJ)*S(KK,LU 
200  CONTINUE 
210  CONTINUF 

DO   <»)C   M = NLtNH 
IF   (>1-NUMNP)   315,3l5f^00 

3l,>   U=UK(M) 
^=2*M-1-KSHIFT 
IFCC10E(M)|   3yCf^00,3l6 

Mft   IKC'IDECM»-!,»   317,370.317 
317   IF(r.ll)F(M»-c.l   31B,3<»C.31B 
31«   irCC')l)e(M)-3.»   390,380.390 
370  CALL   yODIFY(A.Nn2.M8AND.N| 

GO   TO   400 
380 CALL ^nnirvu»Nn2.MBAN0.N» 
390  U«UZ(M) 

N=NM 
CALl    MP0IFV<A.Nn2.MBAN0.NI 

400  CONTINUE 
WKITFIMNBK)   IIMN,MI,M«l,MHANOI ,N»l.NOI 
mK'mK*jt( 
nn 420 N«I.NO 

K=N*MO 
00  420   M»1.ND 
A(N,MI>AIK.M) 

420   A(K,M)=0,0 
IKN»1.LT.N0MNP»   GO  TO  60 
nn   4*0   NM.NUMU 
IX(N,r>) = IABS(lX<N,5M 
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<.P0 CUNT INDf 
iF(STnpi <»<»Ci^crf*9c 

AO.. (AIL f*IT 
riOO PfTURN 

?rCC FdRMM (?6H0NEGATIVF AREA fLtMCNT NO. 141 
2001 fOKMAT (?QHUHANÜ WIDTH EXCEEDS ALtUWAULE 141 

FND 

78 



I 

VIMW'NJl I NP (INI IJ 

DOURLE PRKCISION S.CtO»A,PfST,SIGfU,VtCC,flB,CRtAREAtCOMM,DUfDVtOLt 
nix,i)Y,xL,Pf<,Fim,ini,uRiü/ ,sici,voL»cnMft,COSA,SINA 
?,r.U,ZZ,EF,Xr,fYC.PRiACFLP. tACELZtTEMPtT,   R,Q.ROiZ 

CnWHON  ACELRtACEL7.TEMP,Q,RO(l2».Pl9O0lfZl900I.TI900I.PRf200.2l* 
lNUMNPtNÜMELtNUMMATtNUMPCtMTYPEfLLL»NtHEO(L8),NTC(10»tC00E(900l♦ 
?MTC(lO),IRC(2üOlfJBC(200).NCHECK 
r.0MMQN/SYSARG/UR«900ltUZ»9O0)tSlGn900i6l,CU(l800)»TOL.VOL 

COMMON  /ARG/COt 3t«SllOf 10)f SlG(6)«P(8)f STOtlO) ,RR(5»fZZ(5l • 
lXCtYC«EF(3)fLM(4)tIX(800t3) 

COMMON   /BANARG/   MBANO,NUMBLK.BC1800»»Ai108,54»,KKK,JA 

JDO   100   1=1,8 
P(11=0.0 
no nc j*i,8 

■ ioc s(i,j)=o.o I 

c 
c 

MTYPE=1X(N,5) 
i = ix(N,n 
J'IX(N,2) 
DX»R(J)-R(I» 
nY=z(j»-zm 
XL=DSQRTiOX**2*OY**2» 
CPSA»OX/XL 
SINA«OY/XL 
CHMMaEIl,2,MTYPE)*Ell,4,MTYPEI/XL 

S(I,I»»C0SA*C0SA*C0MM 
S( l,2)=CnSA*SINA*CGMM 
S(l,3)»-S(l,l) 
S<1,4)—S(l.2l 
S(2,n>S(l,2) 
S<2,2»=SINA*SINA*C0MM 
SUtS)**S(lf2) 
S(2,4»=-S(2,2) 
SO«U«i«(|tl) 
S(3,?I=S(2,3» 
S( *, M = sn,i) 

s(4,n»s(i,A) 
SU»2)«S(t*4) 
S(4,3»=S(3,4I 
SU,4) = S(2,2) 

RETURN 

79 



SimwillT INE   OUAI» 
noijRLE   PRFCISION   S» C t B t A * P * ST t S IG t Ut V tCC * BBtCK t AREA «COMHt OUf OV tOL » 

ll)Xfr.Y,XL ,RKfF(iMf TflLtURtU?   , S !GI , VOL .COM, f ,COSAfS INA 
?,CU,/Ztrr ,xC,YC,nR,ACELR,ACfcLZfTEMPfT,   R.O.ROtZ 
3,UfV.XT,XS.RATinfnENtXNT 

CnMMON   ACtLR,ACELZ,TEMP,g,RÜ(l?l,Ri900)»Z(900)fT(90C»tPR(200t2)t 
INIJMNP,NIJMEI ,NUf"^ATfNUMPC,MTVPFtLLL,N|HE0ll8»iNTCt 1011CODEC 900» . 
?^TC( 10),lRC(2rCI,JBCI200»,NCHECK 
Cf)MMilN/SYSARG/UR(900) »UZ ( 900 ) , SIGI (900 »6 ) |CU( 18001 tTOLtVOL 

l»fti»4tlil 
COMMON   /ARG/C<3,3)«S(lOt10)*SIG(6I,P(6ttSTf3,10)*RRI51,ZZ(5 It 

lxr,YCfFF(3)fLM(A),IX(800,5) 
COMMON   /BANARG/   ^RANO.NUMBLK.Ot1800JtAC108f54»»KKKtJA 

niMFNSIDN   U(3).V(3) 
l = IX(N,n 
J=IX(Nf2) 
K=IX(N,3) 
L=IX(N,4) 
vrYPE=IX(N,b) 
vnL=o. 
TF^P = JT(l) + T(J»*TCKUT(lJ)/4.C 
RATn = C.O 
NUVTC=NTC(MTYPr) 
IF    INUMTC.FO.l)   GO   TO   100 
ÖD   50   M=2,NUMTC 
IF   (6(M,l,MTYPFI-TEMP»   5Ct60f60 

50   CONTINUE 
ftO   l)FN = e(M,l,MTYPE>-E(M-l, UMTYPE) 

IF(OEN)    70i80f70 
7C   MATiri=( TFMP-F(M-lf l.MTVPE) )/0EN 
*0   DO   90   KK=l,3 
9C   EF(KK)=E(M-l,KK*l,MTYPE)*RATIO*IElM,KK»l,MTVPE)-E<M-llKK*ltMTYPE)) 

GO  TO   no 
ICO   00   105   KK=l,3 
105   nF(KK)=F(l.KK+l,MTYPF) 
HO   CHNTINUF 

CnMM«EC(l)/(l.-EE(2»**2) 
r (i f i)=niMM 
C(i,?i=cnMM*Fr(2) 
r n.3)=G. 
r,(2,n=r.( 1,2) 
f(2,2)«C(1,1) 
r(2,3)=0. 
r(3,n=o. 

C(3t1) = .5*r.OHMM l.-EE(2) ) 
nn no J = I,IO 

I 
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on   12^   1=1,3 
1?0   ST(I,Jl=0. 

nn  110  1=1,10 
liO   S(I,J)=0. 

on 14? i=if4 
NPP=IX(N,I) 
PR(I»=n(NPPI 

UO   7I{ I )=7(NPP) 
IF( IX(M,3|-IX(N,4n    U5,150,U5 

146   xr,= (KR( 1URK(?)»RRI3URR(4) 1/4. 
YC = IZZ( l)+?Z(?)*?Z(3»*ZZ(4H/4, 
»R(5»=Xf. 
7Z(5)=YC 
K = 5 
J=l 
1*4 
LM(3I=9 
NT = 4 
GO   TO   160 

ISP   NT=1 

1 = 1 
K = 3 
J = 2 
xr, = (RR(lJ*RP(2J*PRI3n/3. 
YC=(ZZ(l)*ZZ(2l*ZZ(3n/3. 
RK<5)=RR(3I 
ZZC5J=ZZ(3) 

160   DO   200   NN=ltNT 
LM(lJr2*I-l 
LM(2)=2*J-l 
UfU'/ZCJl-ZZCK) 
U(?l=7ZCK»-ZZm 
U(3)=ZZ(I )-ZZ<J) 
V( l)=RR(K)-RRU) 
V<2)=Pk(I)-RR(K) 
V(3»=RR<J)-RRJn 
ARFA=(RR(JI*U(2»*RRm»Ull)*RPI5l*ül3l)/2. 
VnL»VnL*AREA 
CnMM».?5/ARf-A 
XNT»NT 
r.nM=2./XNT 
r.nM=cnM*coMM 
DO   1R0   L»l,3 
II«LM(L) 
ST(l,lI) = ST(l,in*UUJ*COM 
ST(2,TI*n«ST(2,n*ll*V«L»*C0M 
sT(3,in=sT(3,m*viu*cnM 
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1 RO 

?nc 

??0 

2 3C 

ST ( 
no 
JJ = 
S( I 
S( I 
S( I 
S( J 
CHN 
f«J 
J = J 
CON 
IF( 
nn 
KK = 
on 
cr.= 
nn 
ST( 
0(1 
S( J 
CON 
KFT 
PNO 

IRC •■U1 

I,JJ)=S(II,JJ)*(:J« .)*CU,linMM»*V(L»»CC3,3l*VfMimOMM 
1 ,JJ*l)=Sm,JJ*l»»(li(L)*CU,2l*V(H)*V(Ll*C!3,3l*U«Mn*COMM 
1H, JJ*l)=S(II*l,JJ*n*lV(Ll*CClf ll*V(^l*U(LI*C(3t3l*U(HII*COHM 

J*I,II )=sm.jj*i) 
TINUF 

♦ 1 
TINU 
IX(N 
240 
1C-I 

S(<K 
2 JO 
J.K) 
240 
,K) = 
TINU 
UKM 

,3)-IX(N,4)) 220f250,220 
1 = 1,2 

K=l,KK 
♦ 1,K»/S(KKM,KKHI 
J = l,3 
= ST(J,K)-CC*STU,KK*l» 
J=l,KK 
S(JfK)-CC*S(J,KK*ll 
F 



I 
I 

SUlfnUTINF STRESS 

^IMiar   PI'RriSlUN   S,C»R,A,Pf ST, SIC» U.V.CCtBBtCR t AREA fCOMM.OUtDV» DLt 
IDX.DY.XI. .RR.FOR.TOL t UR.UZ   , S IGI ♦ VOL tCOM, E iCOSA, S INA 
?iCUf//,FE,XCfYCfPK,ACELR,ACELZfTEMPfTf   R.Q,RO,Z 
1frC,HH,CWtSSfSC#S2,C?,EPSfQT 

rnMMrjN   ACELR,ACELZ,TEMP,0,RO(l2)fRC90C»,Z(900),T(90CI,PR(200f2»f 
irUMriP.NUMEL.NUMMATtNUMPC.MTYPEfLLL.N.HEOI 18»,NTCI 10» »CODE ( 90011 
2MTC(10 1,IBC(2001,JBC(2001,NCHECK 
fnMMON/SYSARG/UR(900),UZ(900»,SIGI(900,6J,CU(l800),TOL,VOL 

l,E(fl,^,l2» 
CnMMQN  /ARG/C(3,3),SI 10,IC»,SIG(6I,P(fl»,STC3,10),RRI5»,ZZ<5) , 

IXC. ,YC,FE(3),LMU»,m800,5) 
COMMON /RANARG/ M9AN0,NUMBLK,B(1800),A(108,54»,KKK,JA 
OFFINE FILE 1(50,1500,Ü,NBK),2(800,256,U,ID) 
FOR = 0,0 
MPRINT=n 
OP   6C0   M=l,NUMfcL 
ro=M 
F INTK?« I()J 
N = M 
IX(M,5J = IAPS(IX(N,5n 
MTYPF=IX(N,5) 
SIGI(N,<»»=0. 
S I GI IN,S)=0 . 
SIGI(N,6)=0. 
ir( IX(N,3)-IX(N,?))   90,60,90 

60   F=IX(N,1) 
J=IX(N,2) 
X(; = (fUI l*R(J))/?,0 
Yr=(z(i)*z(j))/?,o 
f)x=Rij»-P( n 
OY = 7(.n-7( I ) 
XL = l)S(JMT(0X**2*nY**2) 
l)U = M?*J-l)-R(2*l-l) 
nv = fM2*JI-fl(2*II 
ni =rv*nY/XL*f)U*nx/xL 
Sir,( n = L;( I,4,MTYPE)*DL*E(l,2,MTYPE)/XL*SIGI(N,n*E(l,4,MTYPE) 
IF(5. IG( U.GT.G.)   GO   TO   ICO 
SIGI(N,n-SIG(l) 
no TO ^co 

100   SIGMN,4)»E(l,2,MTYPE)*0L/XL*SIGI(N,l) 
SIGT(N,n»C. 
GO   TO  420 

<?0   R6A0(2M0)      ( (CdlK.JJKj^JKsl^I.EEdlKj.IIK-l, 3) 
1 , ((S(JJI,KKn,KKI«l,8),JJI = l,8),((ST(IKK,JKK),JKK»l,8),IKK = l,3) 
2 ,(RR(JII),ZZ(JII),jn»l,4),XC,VC,TEMP,V0L 

MM»A 



IM IXlN.^-mN,*»))    170,16: ,170 
16C   «M=3 

17C   HD   14C    1=1,3 
PP(I )=C. 
nn  180  J«I,MM 

JJ=?*IX(N,J) 
180   BR(I )=RRI1)*ST( I,in*B(JJ»*ST( 1,11-1 l*B(JJ-ll 

1F(LLL.CT,1)   GÜ   TO   182 
DT=TFMP-Q 
DX=Ee(3)«0T 
DY=nx 
SIG( n=-c( i,n*Dx-c( it2i*ov ♦sioicN.n 
SIG(2)=-C(?,n*DX-C(2f2»*OY ♦SIGHN»2» 
SIG(3)=SIGI(Nf3) 
GO TO 184 
OH 183 1=1,3 
SIG(I)=0.C 
CONTINUE 
00 190 1=1,3 
on las j=i,3 
SIG( I) = SIG(I )*C( I,J)*RRU) 
CONTINUE 
IKLLI..E0.1) GO TO 195 
UO 19? 1=1,3 
SIOI I)= SIG( I USIGMN,!) 
CnNTINUF 
CC = (SIG(l)*SIC(2) )/2.0 
rtfl = ( Sir.( 1)-SIG(2» )/?. 
CR=OSORT<H0**2*SIG(3l**2» 
SIG(4)»CC*CR 
SlG(5)=rc-CK 
SIG(6)=C.C 
If ((HH.FÜ.C.).AN0.(SIG(3).t0.C.M GO TO 200 
SIG(6)=?8.648*0ÄTAN2(SIG(3l,Bo) 
Dx = r ,o 

?oo sir,nN,ii = sir.(i) 
si&i(N,2i = srr,(2» 
SIG1(N,3»=SIG(3I 
IF((SIG(4).LE.O.C0).OR.(MTC(MTVPE).EQ.O)} GO TO 900 
IFCSIGCH.GE.O.COOOl» GO TO 37C 
FPS = Sir,(6)/b7.296 
rc=t,cos(FPSi 
<
;S = USINIEPS» 
c?=cc*cc 
S2=ss*<;s 
sc=ss*cc 

18? 
183 
184 

185 
19C 

19? 
195 
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f. 
c 

SIGI(M,A)=   SIG(4l*C2<-DX»S? 
sir,i(Nf«i»r siG(<»)*S2*r)x*r? 
«i i G n N f <>»= s ? r.( <») * sr.-r)x*sc 

GO   TO   AGO 
^70   SIGMN,AI«SIGn» 

SI",I(N,5)=SIG<2) 
SIGI(Nt6)*SIG(3l 

«OC   SIGKNf l)»SIG(l)-SIGI(Nt^) 
Sir,l(Nt2)»SIG(2) •SIGIINf5) 
SIGI(Nt?)eSIG(3)-SIGI(N,6) 

<»?0   nx = SIGI(Nf4)*»2*SIGHNf5)**2 + SIGI<Nf6»**2 
nx=DSORT(DX» 
IF(DX.LF.FOR»   GO   TO  ^50 
IJK = N 
FnR=ox 

A50 CONTINUF 
•JOO   IF(MPRINT)   55C»52C.550 
'>2^   WRITt(6,2C00» 

MPKINT=^0 
550 MPkINT=MPPINT-l 

WPITF(6«200nNtXC,VCtCSIG( I )f I«lf6)tOX 
600  CONTINUF 

WRITE(6,2r02IFnRtIJK 
IFJFnR.LF.TPLI   NCHECK   =   0 
KFTURN 

2rC0   FHKKAT   (7H1EL.N0.      7X   IHX     7X   IHY   4X   8HX-STRESS  4X   8HY-STRESS   3X 
l   QHXY-STPFSS   2X   IGHMAX-STRESS   2X   IGHMIN-STRESS   7H     ANGLE   2X   17HUNB 
PAMNCEO   FPRCF » 

2001   r^qM^T   (I7,2Ffl.?,lP5Fl2.4,0PlF7.2fIPE20.4I 
200?   ffMMATnOMCMAXIMUM   UNBALANCED  FORCE   * E12.5,16H   IN   ELEMENT   NO« 

l   15» '     '' 
^N() 
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Sljnil. MUT IMF    MODI F Y ( A , NFO . ^H A^O, N » 
l)iilJl»Ll     I'kK.ISI'lN   A 
DIMENSION A(108,S4J 
n;i ^50 M=?fMBANn 
K=N-M+l 
IF(K.LH.O) GO Tf) 235 
A(KfM»=C.O 

?3t>   K = N + M-1 
IF(NEO.LT.K) GO TO 250 
a(N,M)=0.0 

250 CONTINUF 
A(N,l)=l.O 
PFTURN 
fND 

I 
I 
I 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

SURROUTINF  LOAD 
Dm/RLE   PPFCISIG^  SfCtBfAfP,ST,SIGtU,V.CCfBB,CRtAREAtCOMM,OUtDVfOL. 

IDX.DY.XI (RRvFORtTnL»URtU7   •SIGI«VOLtCOHfEtCOSA*SINA 
?.CU,Z/.rF,XCfYCfPR.ACELRfAC6LZ«T£MP,T,   R,QfRO,I 
3,PPltPP?füR,D7tFP,XMMtOT 

CHMMOM   ACFI (»,ACtLZ,TEMP,0,RO(l2l«R(900lf Z<900»tT|90C»tPR(200f2»f 
lNUMNP«NllMFLfNUMMAT«NUMPC«HTVPEtLLL«N«HEOf 18 ) «NTC11011CODE! 90011 
?MTC(lO»,IBC(200),J8C(200»fNCHfCK 

CHMMON/SYSARG/UR(900)«UZI 900)«SIGM900,6ItCUf18001«TOLtVOL 
ltEtSf%*t2l 

COMMON   /ARr/C(3t3),SnOf ICI,SIG(6),PCei,ST(3t10),RRI5)tZZ(9), 
lXC,YCfEF(3),LM(4l,IX(fl00,5) 

COMMON   /RANARG/   MRAN0,NUM8LK ,B< 1800 I »Al 106,54 I ,KKIC, JA 
00   50  NM.NUMNP 
P(2*N-n»UR(N» 
n<2*N»=UZ(NI 
UP(N»=0, 
IJZ(N)=0. 

50   CONTINUE 
IF( (NUMPC.EQ.C).nR.fLLL.GT.in   GO   TO   300 
00   200   L«1,NUMPC 
r = IHC(L » 
J»JHC(L) 
OR = /(I J-ZU» 
nz=p(j)-kci) 
PP2=(PR(L,2)+PR(L.l)»/6. 
PPl=PP2*PR(L,l)/6, 
PP2=PP2*PRJL,2)/6. 
11=2*1 
JJ=2*J 
H( II-l)=R(n-ll*PP|*0R 
B{ in=B(III*PPl*DZ 
F<(JJ-n=fl(JJ-ll+PP2*DR 
B(JJJ=B(JJ)*PP2*0Z 

2C0   CONTINUE 
3C0   DO   7C0   N=1,NUMEL 

i«ix(M,n 
J=IX(N,2I 
K=IX(N,3) 
L=iy(N,A) 
MTYPF=IX(N,5) 
irdLi.Eo.n GO TO 330 
IF(PTC(MTYPE).EO.O) 
IF(SIGI(N,4).Nr.O.) 
IF(SIGI(N,5),NE.C.) 
IF(Str>I(N,6).NE.C.t 
GO TO 7C0 

320 CONTINUE 

GO TO 700 
GO TO 320 
GO TO 32C 
CO TO 320 
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Vir    iMJ.En.K)   00   TO   bCO 

PrAn(2l 10)       ( (C(I IK,JJK> ,JJK=l,3l ,EH UK) , I IK« It 3» 
1 ,((MJJI.KKll,KKI=1,8),JJI=l,8»,(tSTJIKK,JKKltJKK«lt8liIKK»lf31 
2 ,(Rk(JI 1 l,Z?Uinf JII = li4l,XCfYCtTEMPfV0L 

IF(LLL.EQ.l)   GO  TO  ^00 
SIG(n=-SIGI(N,4) 
Slß(2»«-SIGUNti) 
SIG(3)=-SIGI(N,6J 
GO   TO  AbC 

<fOC   '■T = TFMP-0 
nx = f-F(3)*0T 
DY=Efc(3)*DT 
SIG(l)=-Ca,l)*DX-C(lf2l*DY   +51 GUN, I» 
SIG(2> = -C(2,n*DX-C(2,2l*0Y   ♦S1GI(N,2> 
SIGCi)*SIGI(N,3) 

450   00   520   I=UB 
P( I )=r>.0 
00   510   J=l,3 

5io p( i)=p(n-sT( j,n«siGi j) 
520   P( n=p( I »'WOL 

IFdll.EÜ.l)   GO   TO   540 
00   5^0   1=1,3 

53C   SIG( I ) = 0.C 
GO   TO   6C0 

5/Vr   MM = 4 

IF( IX(N,3).EQ.1X<N,4M   MM*3 
XMM=MM 
r)Y = VnL*ÄCFl.7*R0(MTYPEI/XMM 
nx=VIU ♦AfFLR*HO(MTYPE)/XMM 
00   5 50   1=1,MM 
P(?*n = P(2*l »«-OY 
P(2*I-l»=P(2*I-n*DX 
00   TO   6C0 
CALL   ONED 
nx=R(j)-R(I) 
nY=2(j)-zm 
^P'-SIGICN,4l/fc(l,2,MTYPE) 
l)X=()X*l:P 
D¥«OV*IP 
p( i )=sn ,n*ox+s(i,2)*oY 
P(?)=S(2,l)*ÜX + «;(2,2)*OY 
P(3)»-P(U 
pm=-p(2t 

600   00   6?0   11=1,4 
h?n  IM(In=2*Ix(N,II)-l 

00   650   JJ=1,4 
II=IM( JJ) 

550 

5Ü0 



uto m ii*i »»P( ii*n*p(2*jj) 

DP 750 N=1,NUMKP 
IFtCOaCIKI.EOiO.I GO TO 750 
IF( (Cn()E(N).E0.l.).QR.(CODE(N).EQ.3.n B(2*N-n«0. 
IF M CODE (N) .FQ.2.).OR.<COI)E(N).EQ.3.ll B(2*N)«0.0 

750 CONTINUE 
RETURN 
FNO 

I 
I 
! 
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I 
SlJRRnilTIMC    SVMBAN 
nniJHLf    PKEC IS ION  SfCtntA«P(STtSIGfUfViCC«aBtCRtAREAtCOMMfOU»OVfOLf 

inxt[.VtXLfRRffUR,TnLtUR»U?    ,S IGI ♦ VOL # COMt F tCOSA» SINA 
?»ClJ»Z7,FFt)(C«Yr«PR.ACELR*ACtLI«:f:MP,TtDTtUfRO 

CnMMHN   /DANARG/   MBANOtNUMRLK «Bll *00 ) tAUCBt^l f KKKf JA 
DFFINF   FRF   H 50, I SOOt U.NHK I , 2( öOOf 256,U 1101 

c 
c 

NN»«)^ 
NL»NN*l 
MH3NM4-NN 
NRaC 
N'NK-C 
NR<«1 
FINOd'l) 
IFUKK.OT.IJ   GO  TO   ?00 
GO   TO   ISO 

IOC »smK«\NK*JA 
FINMI'NBKI 
Nö»Nß*l 
00   12b  N«l,NN 
NMsNN4-N 
DO   12S   M=I,MBAND 
A(Nt^)«A(NM(M| 

r 
A(MMtM)sO. 

IFCNIJMBLK-NBJ   l5C»?00f 150 
15^ KFAU(l*NBK)(U(N,M)(H-lvMBANDItN>NLfNHl 

NNK«NBK 
IFINH» ?C0«ICC,200 

20C DO 3OO N«1,NN 
irjACNtlll   221)»3rC,2?5 

??•> on 27«) i«?.MHANn 
IF(A(N»L))   230,275,230 

230   CsA(N,U/A(N,n 
I=N*L-l 
J-0 
00   250   K«L,MBANO 
J = J*l 

250   AlI,JJ=A(I,J)-C*A(N,K| 
A(N,L»«f. 

2 75 r.nNTINUE 
300   mNT INUF 

NHK=NnK-JA 
WPITFd'NRK)    ((A(N,M»,M=1 ,MBANO»,N»l,NNI 
IF(NI|M|1LK.F0.NBI   RETURN 
GM   TO   100 

2000   NfJ='' 
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On  TD  WiC 
Arc  MJ. = MU1 

NHK«NNK*JA 
FINDd'NBK) 
00   A^S   N«lfNN 
NM=N|N4-N 
pn   <,2S   M«l,MRANl) 
MNtM|>A(NM«M) 

!F(MUMBLK-NB)   <»50fb00f450 
450   PFAI (l,NHKM(A(N»MJfM=l,MBANüJ,N=NLfNH» 

NNK=NBK 
IF(MB»   5nCf400»500 

5C0   DO   55C   N=1,NN 
J«NO*N 
DO   54'    L*2»MHAN0 
I=J+L-l 
IFiNEO-I» 545,540.540 

540 B( I )=B( n-A(N,LI*BU» 
545 IF(A(N,l> .bU.O.) A(N,n = l. 
550 HI J)=B( J)/A(N,n 

MHK=NNK-JA 
IFIMUMBLK.EO.NB)   GO   TO   700 

600  NO»NQ*NN 
00   TO   400 

7^0   OH   750   M=l,NN 

00   750   L»2,MBANn 
IFCAtN.L»)   740,750,740 

740   I=J*l-l 
TFCNEO-I) 750,745,745 

7<»S P( J»=P( J»-A(N,L»*Bn I 
75'*   CnNTINUE 

Mrt=NB-l 
IF(NB.l'O.C)   RETURN 
FINOd'NBK) 
OH   BOO   N»l,NN 
NM^NN*N 
DO   800   M=l,MBANn 
A(N^,M)«A(N,M} 

fllC'   A(N,M|=0. 
MEAD   (I'NBKI    ((A(N,M),Msl,MBANO)vN»l,NNI 
NBKxNBK-JA 
NO=NO-NN 
GO   Tn   TOO 
FNO 
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4.4  Example 

A tunnel whose configuration and finite element idealization is shown in 

Fig. 4-1 was solved assuming rock to crack under tension.   Lining was assumed 

to be capable of resisting tensile loads.   Figs. 4-2 and 4-3 show the initial elastic 

and final »no tension* solutions.   The tensile stresses are indicated by arrows. 

Comparison of Fig. 4-2 and 4-3 shows the redistribution of stresses caused by 

the inability of rock to withstand tension.   In the examplef the excavation and 

lining of tunnel is assumed to be a single step ignoring the effect of sequential 

operations.   This is unrealistic and further development will allow for actual 

sequence of construction.   However, the example illustrates use of the computer 

I program and is similar to the one used by Zlenkiewicz, Valliappan and King (1968). 

The following material constants were used for the solution: 

' Lining: E = 2 x 106 psi 
Iv =0.15 

Y = 150 lbs./ft. 

1 
1 
I 
. 

I 

3 

Rock: E = 1 x 106 psi 
v =0.2 
V = 150 lbs./ft.3 
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I 
I r-» 

FINITE   ELEMENT   IDEALIZATION   OF   LINED  1UNNCL 

FiG. 41 

Scalt'T-lo' 
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Scale for Stresses 

-f. 1"    10,000 psf 
Arrows for Tension 

+ 

ELASTIC  SOLUTION   FOR THE    LINED    TUNNEL 

FIG.   4.2 
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i 
I 
I 

KINAL    NO-TENSION   SOLUTION    FOR THE   LINED   TUNNEL 

FIG.    4.3 

95 



CHAPTER V 

ADDITIONAL COMMENTS 



Chapter V.   Additional Comments 

The work reported Is continuing and significant changes may be made 

before the finite element computer programs reach their final form.   In the 

case of elastic-plastic materials following Mohr-Coulomb Theory non-monotonic 

loads have to be allowed for and also alternative numerical solution procedures 

have to be examined.   For the case of jointed rock the program included in the 

report represents a necessary first step.   Modification to include the Griffith 

failure criterion is being done.   For Griffith rupture caused by a tensile stress 

field acting on pre-existing flaws, the solution scheme appears to be fairly 

straight forward.   However, the case of fracture under compressive stress 

fields may require development of new methods. 
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